


初中数学冀教版八年级下册第二十章 函数综合与测试同步练习题
展开冀教版八年级数学下册第二十章函数专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、当时,函数的值是( )
A. B. C.2 D.1
2、小强和爷爷去爬山,爷爷先出发一段时间后小强再出发,途中小强追上了爷爷并最终先爬到山顶,两人所爬的高度h(米)与小强出发后的时间t(分钟)的函数关系如图所示,下列结论正确的是:( )
A.爷爷比小强先出发20分钟
B.小强爬山的速度是爷爷的2倍
C.表示的是爷爷爬山的情况,表示的是小强爬山的情况
D.山的高度是480米
3、下面关于函数的三种表示方法叙述错误的是( )
A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
C.用解析式法表示函数关系,可以方便地计算函数值
D.任何函数关系都可以用上述三种方法来表示
4、函数图象是研究函数的重要工具.探索函数性质时,我们往往要经历列表、描点、连线画出函数的图象,然后观察分析图象特征,概括函数性质,小明在探索函数的性质时,根据如下的列表,画出了该函数的图象并进行了观察表现.
… | … | ||||||||||
… | … |
小明根据他的发现写出了以下三个命题:
①当时,函数图象关于直线对称;
②时,函数有最小值,最小值为;
③时,函数的值随点的增大而减小.
其中正确的是( )
A.①② B.①③ C.②③ D.①②③
5、如图,已知在ABC中,AB=AC,点D沿BC自B向C运动,作BE⊥AD于E,CF⊥AD于F,则BE+CF的值y与BD的长x之间的函数图象大致是( )
A. B.
C. D.
6、函数中,自变量x的取值范围是( )
A. B. C. D.
7、根据如图所示的程序计算函数的值,若输入的值为1,则输出的值为2;若输入的值为,则输出的值为( ).
A. B. C.4 D.8
8、函数的自变量x的取值范围是( )
A.x>5 B.x<5 C.x≠5 D.x≥-5
9、小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的关系.则小亮步行的速度和乘公交车的速度分别是( )
A.100 m/min,266m/min B.62.5m/min,500m/min
C.62.5m/min,437.5m/min D.100m/min,500m/min
10、为落实“五育并举”,某校利用课后延时服务时间进行趣味运动,甲同学从跑道处匀速跑往处,乙同学从处匀速跑往处,两人同时出发,到达各自终点后立即停止运动.设甲同学跑步的时间为(秒),甲、乙两人之间的距离为(米),与之间的函数关系如图所示,则图中的值是( )
A. B.18 C. D.20
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个变化过程中,数值发生变化的量为_____.
在一个变化过程中,数值始终不变的量为_____.
在同一个变化过程中,理解变量与常量的关键词:发生_____和始终不变.
2、长方形的周长为20,则面积y与一条边长x之间的函数关系式是___.
3、已知y=2x2﹣3x+1,当x=1时,函数值为____.
4、已知函数,当时,_______;当时,_______.
5、函数的定义域是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、求出下列函数中自变量的取值范围
(1)
(2)
(3)
2、如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→ A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm, a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD的面积S(cm)与x(秒)的函数关系图象.
(1)根据图象得a= ;b= ;
(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.
3、小华骑电动车从家出发去西安交大,当他骑了一段路时,想起要买一本书,于是原路返回刚经过的新华书店,买到书后继续前往交大,如图是他离家的距离与时间的关系示意图,请根据图中提供的信息回答下列问题:
(1)小华家离西安交大的距离是多少?
(2)买到书后,小华从新华书店到西安交大骑车的平均速度是多少?
(3)本次去西安交大途中,小华一共行驶了多少米?
4、某客运公司的行李托运收费标准为:行李是千克,收费为元(不足千克的按千克计),以后每增加千克需要增加相同的费用.
行李质量/千克 | ||||||||
托运费/元 |
|
|
|
(1)完成上面表格;
(2)写出行李托运费(元)与行李质量(千克)的关系式.
5、小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.
-参考答案-
一、单选题
1、D
【解析】
【分析】
把代入计算即可.
【详解】
解:把代入,得
,
故选D.
【点睛】
本题考查的是函数值的求法,函数值是指自变量在取值范围内取某个值时,函数与之对应唯一确定的值.
2、B
【解析】
【分析】
由爷爷先出发,可以判断C,再根据图象上点的坐标含义分别计算出爷爷与小强的爬山速度,从而可判断A,B,根据图象上点的坐标含义同时可判断D,从而可得答案.
【详解】
解: 爷爷先出发一段时间后小强再出发,
分别表示小强与爷爷的爬山信息,故C不符合题意;
由的图象可得:小强爬山的速度为:米/分,
由的图象可得:爷爷爬山的速度为:米/分,
所以分钟,故A不符合题意;
小强爬山的速度是爷爷的2倍,故B符合题意;
由图象可得:山的高度是720米,故D不符合题意;
故选B
【点睛】
本题考查的是从函数图象中获取信息,掌握“函数图象上点的坐标含义”是解本题的关键.
3、D
【解析】
【分析】
根据函数三种表示方法的特点即可作出判断.
【详解】
前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的.
故选:D
【点睛】
本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.
4、C
【解析】
【分析】
(1)把,代入 求出、,画出函数图像,函数图象关于直线对称,则横纵坐标交换位置,即可判断①;根据图像可判断②③.
【详解】
把,代入 得:,
画出函数图像如图所示:
当时,;当时,,
故①错误;
由图像可得出:②③正确.
故选:C.
【点睛】
函数的图像与性质,根据表格画函数图像,掌握对称的性质是解题的关键.
5、D
【解析】
【分析】
根据题意过点A作AD′⊥BC于点D′,由题可知,当点D从点B运动到点C,即x从小变大时,AD也是由大变小再变大,而△ABC的面积不变,又S=AD,即y是由小变大再变小,结合选项可得结论.
【详解】
解:过点A作AD′⊥BC于点D′,如图,
由题可知,当点D从点B运动到点C,即x从小变大中,AD也是由大变小再变大,
而△ABC的面积不变,又S=AD,即y是由小变大再变小,
结合选项可知,D选项是正确的;
故选:D.
【点睛】
本题主要考查动点问题的函数图象,题中没有给任何的数据,需要通过变化趋势进行判断.
6、B
【解析】
【分析】
根据分母不为零,函数有意义,可得答案.
【详解】
解:函数有意义,得
,
解得,
故选:B.
【点睛】
本题考查了函数自变量的取值范围,解题的关键是掌握分母不为零.
7、A
【解析】
【分析】
输入,则有;输入,则有,将代数式的值代入求解即可.
【详解】
解:输入,则有;
输入,则有;
故选A.
【点睛】
本题考查了程序流程图与代数式求值.解题的关键在于正确求解代数式的值.
8、D
【解析】
【分析】
根据二次根式有意义的条件即可得出答案.
【详解】
解:∵函数,
∴,
解得:,
故选:D.
【点睛】
本题考查了二次根式有意义的条件,熟知根号下为非负数是解题的关键.
9、D
【解析】
【分析】
根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.
【详解】
解:由图象可知:他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min;
公交车(30−16)min走了(8−1)km,故公交车的速度为7000÷14=500m/min.
故选:D.
【点睛】
本题考查利用函数的图象解决实际问题,解决本题的关键是正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.
10、A
【解析】
【分析】
根据题意和函数图象中的数据,可以得到甲25秒跑完100米,从而可以求得甲的速度,再根据图象中的数据,可知甲、乙跑10秒钟跑的路程之和为100米,从而可以求得乙的速度,然后用100除以乙的速度,即可得到t的值.
【详解】
解:由图象可得,
甲的速度为100÷25=4(米/秒),
乙的速度为:100÷10-4=10-4=6(米/秒),
则t=,
故选:A.
【点睛】
本题考查一次函数的应用,解答本题的关键是求出甲、乙的速度.
二、填空题
1、 变量 常量 变化
【解析】
略
2、
【解析】
【详解】
解:∵长方形的周长为20,一条边为x,
∴长方形的另一条边为,
∴ .
故答案为:.
【点睛】
本题主要考查了列函数关系式,解题的关键在于能够熟练掌握长方形周长公式和面积公式.
3、0
【解析】
【分析】
根据函数值的求法,直接将x=1代入函数关系式得出即可.
【详解】
解:y=2x2-3x+1,
当x=1时,y=2×12-3×1+1=0.
故答案为:0.
【点睛】
此题主要考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题关键.
4、 3
【解析】
【分析】
分别将和代入解析式,即可求解.
【详解】
解:当时,;
当时, ,解得: .
故答案为:3; .
【点睛】
本题主要考查了求函数的自变量和函数值,解题的关键是理解并掌握当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.
5、x≠0
【解析】
【分析】
由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.
【详解】
解:函数的定义域是:x≠0.
故答案为:x≠0.
【点睛】
本题考查求函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.
三、解答题
1、(1)且;(2)且;(3)
【解析】
【分析】
(1)根据分式有意义的条件和零指数幂底数不为0进行求解即可;
(2)根据分式有意义的条件和二次根式有意义的条件进行求解即可;
(3)根据二次根式有意义的条件进行求解即可.
【详解】
解:(1)要使有意义,需,解得且;
(2)要使有意义,需,解得且;
(3)要使有意义,需,解得.
【点睛】
本题主要考查了分式有意义的条件,二次根式有意义的条件,零指数幂底数不为0,解题的关键在于能够熟练掌握相关知识进行求解.
2、(1)a=6;b=2;(2)y1=2x-6(6≤x≤17),y2=22-x(6≤x≤22)
【解析】
【分析】
(1)先判断出P改变速度时是在AB上运动,由此即可求出改变速度的时间和位置,从而求出a,再根据在第8秒P的面积判断出此时P运动到B点,即可求出b;
(2)根据P和Q的总路程都是CD+BC+AB=28cm,然后根据题意进行求解即可.
【详解】
解:(1)∵当P在线段AB上运动时,,
∴当P在线段AB上运动时,△APD的面积一直增大,
∵四边形ABCD是矩形,
∴AD=BC=10cm,
∴当P在线段AB上运动时,△APD的面积的最大值即为P运动到B点时,此时,
由函数图像可知,当P改变速度时,此时P还在AB上运动,
∴,即,
解得,
∴,
∴
又由函数图像可知当P改变速度之后,在第8秒面积达到40cm2,即此时P到底B点
∴,
∴,
故答案为:6,2;
(2)由(1)得再第6秒开始改变速度,
∴改变速度时,P行走的路程为6cm,Q行走的路程为12cm,
∵Q和P的总路程都为CD+BC+AB=28cm,
∴,
【点睛】
本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P点在改变速度时是在AB上运动.
3、(1)4800米;(2)450米/分;(3)6800米
【解析】
【分析】
(1)根据函数图象,直接可得小华家到西安交大的路程;
(2)根据函数图象求得从新华书店到西安交大的路程和时间,根据速度等于路程除以时间即可求得;
(3)根据函数图象可得路程为3段,将其相加即可.
【详解】
解:(1)根据函数图象,可知小华家到西安交大的路程是4800米;
(2)小华从新华书店到西安交大的路程为4800﹣3000=1800米,所用时间为28﹣24=4分钟,
小华从新华书店到西安交大骑车的平均速度是1800÷4=450米/分;
(3)根据函数图象,小华一共行驶了4800+2×(4000﹣3000)=6800(米).
【点睛】
本题考查了函数图象,要理解横纵坐标表示的含义以及小华的运动过程,从函数图象中获取信息是解题的关键.
4、(1)5.6;6.4;11.2;(2)
【解析】
【分析】
(1)由表格可知每增加1千克需增加费用为0.8元,由此可完成表格;
(2)根据表格及(1)可直接进行求解.
【详解】
解:(1)由表格得每增加1千克需增加费用为(4.8-4)÷(2-1)=0.8元,
∴当x=3时,y=(3-1)×0.8+4=5.6;当x=4时,y=(4-1)×0.8+4=6.4;当x=10时,y=(10-1)×0.8+4=11.2;
故答案为5.6;6.4;11.2;
(2)由(1)可得:
行李托运费(元)与行李质量(千克)的关系式为.
【点睛】
本题主要考查函数的表示,熟练掌握函数的相关概念及表示是解题的关键.
5、
【解析】
【分析】
由等腰三角形的周长=腰长×2+底长,可得出函数关系式.求自变量的取值范围时可根据三角形的三边关系来解(三角形两边的和大于第三边,两边的差小于第三边).
【详解】
解:由题意得,=80,
所以,y=80-2x,
由于三角形两边之和大于第三边,且边长大于0,
所以,
解得,
所以.
【点睛】
本题考查了一次函数的应用,本题中求自变量的取值范围时要注意三角形三边关系的运用.
初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测: 这是一份初中数学冀教版八年级下册第二十章 函数综合与测试课堂检测,共23页。试卷主要包含了小明家等内容,欢迎下载使用。
冀教版八年级下册第二十章 函数综合与测试练习题: 这是一份冀教版八年级下册第二十章 函数综合与测试练习题,共18页。试卷主要包含了当时,函数的值是等内容,欢迎下载使用。
2020-2021学年第二十章 函数综合与测试课后作业题: 这是一份2020-2021学年第二十章 函数综合与测试课后作业题,共21页。