初中第30章 二次函数综合与测试同步练习题
展开九年级数学下册第三十章二次函数专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
2、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
3、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )
A.①④ B.③⑤ C.②⑤ D.③④
4、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
A. B.
C. D.
5、对于二次函数,下列说法正确的是( )
A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
6、已知点,,都在函数的图象上,则( )
A. B. C. D.
7、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是( )
A.或6 B.或6 C.或6 D.或
8、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
9、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
10、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
2、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).
3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
4、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.
5、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)
三、解答题(5小题,每小题10分,共计50分)
1、已知抛物线经过点,与y轴交于点C,连接.
(1)求抛物线的解析式;
(2)在直线上方抛物线上取一点P,过点P作轴交边于点Q,求的最大值;
(3)在直线上方抛物线上取一点D,连接.交于点F,当时,求点D的坐标.
2、红星公司销售自主研发的一种电子产品,已知该电子产品的生产成本为每件40元,规定销售单价不低于44元,且销售每件产品的利润率不能超过50%,试销售期间发现,当销售单价定为44元时,每月可售出300万件,销售单价每上涨1元,每月销售量减少10万件,现公司决定提价销售,设销售单价为x元,每月销售量为y元.
(1)请写出y与x之间的函数关系式和自变量x的取值范围;
(2)当电子产品的销售单价定为多少元时,公司每月销售电子产品获得的利润w最大?最大利润是多少万元?
(3)若公司要使销售该电子产品每月获得的利润不低于2400万元,则每月的销售量最多应为多少万件?
3、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.
(1)求抛物线的解析式;
(2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
4、如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,-),B(-2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.
(1)求二次函数解析式;
(2)如图1,点P是第四象限抛物线上一点,且满足BP∥AD,抛物线交x轴于点C.M为直线AB下方抛物线上一点,过点M作PC的平行线交BP于点N,求MN最大值;
(3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.
5、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).
(1)当为直角三角形时,求的面积
(2)如图,当时,过点P作轴于点Q,求BQ的长.
(3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
【详解】
解:∵抛物线的对称轴为x=-1,
所以B(1,0)关于直线x=-1的对称点为A(-3,0),
∴AB=1-(-3)=4,故①正确;
由图象可知:抛物线与x轴有两个交点,
∴Δ=b2-4ac>0,故②正确;
由图象可知:抛物线开口向上,
∴a>0,
由对称轴可知:−<0,
∴b>0,故③正确;
当x=-1时,y=a-b+c<0,故④正确;
所以,正确的结论有4个,
故选:D.
【点睛】
本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质.
2、C
【解析】
【分析】
根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
【详解】
解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
∵-2<0<2<3<5,
∴y3<y2<y4<y1,
若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
若y2y4<0,则y1y3<0,选项C符合题意,
若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
故选:C.
【点睛】
本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
3、D
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
②由抛物线的开口方向向下可推出a<0;
因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
③由图可知函数经过(-1,0),∴当,,故③正确;
④对称轴为x=,∴,故④正确;
⑤当y=2时,,故⑤错误;
∴正确的是③④
故选:D
【点睛】
二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
4、D
【解析】
【分析】
根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.
【详解】
解:选项A:由的图象可得:
由的图象可得:则 故A不符合题意;
选项B:由的图象可得:
由的图象可得:则
而抛物线的对称轴为: 则 故B不符合题意;
选项C:由的图象可得:
由的图象可得:则 故C不符合题意;
选项D:由的图象可得:
由的图象可得:则
而抛物线的对称轴为: 则 故D符合题意;
故选D
【点睛】
本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.
5、A
【解析】
【分析】
先将二次函数的解析式化为顶点式,再逐项判断即可求解.
【详解】
解:∵,且 ,
∴二次函数图象开口向下,
∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
B、函数图象的顶点坐标是,故本选项错误,不符合题意;
C、当时,函数有最大值-2,故本选项错误,不符合题意;
∵ ,
∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
6、C
【解析】
【分析】
把点的坐标分别代入函数解析式可分别求得、、,再比较其大小即可.
【详解】
解:点,,都在函数的图象上,
,,,
,
故选:C.
【点睛】
本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.
7、C
【解析】
【分析】
表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.
【详解】
解:∵y=-x2+mx,
∴抛物线开口向下,抛物线的对称轴为x=-,
①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,
∴-(-2)2-2m=5,
解得:m=-;
②当≥1,即m≥2时,当x=1时,函数最大值为5,
∴-12+m=5,
解得:m=6.
③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,
∴-()2+m•=5
解得m=2(舍去)或m=-2(舍去),
综上所述,m=-或6,
故选:C.
【点睛】
本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.
8、C
【解析】
【分析】
把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
【详解】
解:把三个点,,的横坐标代入解析式得,
;;;
所以,,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
9、D
【解析】
【分析】
由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
【详解】
解:二次函数的图象全部在轴的上方,
,,
,
,
.
,.
故选:D.
【点睛】
本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
10、B
【解析】
【分析】
根据增长率问题的计算公式解答.
【详解】
解:第2年的销售量为,
第3年的销售量为,
故选:B.
【点睛】
此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
二、填空题
1、
【解析】
【分析】
利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
【详解】
y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2
故本题答案为:y=(x﹣1)2+2.
【点睛】
本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.
2、<
【解析】
【分析】
根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断的大小关系.
【详解】
解:∵二次函数y=(x﹣1)2,,开口向上,对称轴为
又点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,
故答案为:
【点睛】
本题考查了二次函数图象的性质,掌握二次函数图象的性质是解题的关键.
3、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
4、75
【解析】
【分析】
根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
【详解】
解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,
∴OA25= •n=25,A25B25=n,
∵B25C25=8C25A25,
∴C25(25,),
∵点C25在上,
∴,
解得n=75.
故答案为:75.
【点睛】
本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.
5、
【解析】
【分析】
根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
【详解】
∵与x轴交于A,B两点(点A在点B左侧),
令,则,
解得:,.
∴A点坐标为(-1,0).
∵直线经过点A,
∴,
解得:,
∴该直线解析式为.
当时,直线解析式为,
令,则,
∴的坐标为(0,n).
联立,即,
解得:,.
∴的横坐标为n+1.
将代入中,得:,
∴的坐标为().
∴
故答案为:.
【点睛】
本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
三、解答题
1、 (1)
(2)
(3)(1,4)或(2,3)
【解析】
【分析】
(1)根据题意待定系数法求二次函数解析式即可;
(2)根据二次函数解析式求得点得到坐标,进而求得直线的解析式,设P点坐标为,则Q点坐标为,进而表示出的长,根据二次函数的性质求得最大值即可;
(3)过点D作BC的平行线交x轴于G,交y轴于E,根据∆COF与∆CDF共高,面积比转化为底边比,求得,根据平行线分线段成比例求得,进而求得的长,即可求得的坐标,根据一次函数的平移可得直线EG解析式为:y= -x+5,联立直线与抛物线解析式,即可求得点的坐标
(1)
抛物线经过点,
解得
抛物线的解析式为:
(2)
抛物线的解析式为:
令,则
设直线的解析式为
则
解得
直线BC的解析式为:
过点P作PQ⊥x轴交BC于点Q,设P点坐标为,
则Q点坐标为,
则
∴PQ的最大值是.
(3)
∵∆COF与∆CDF共高,面积比转化为底边比,
OF:DF=S△COF:S△CDF=3:2
过点D作BC的平行线交x轴于G,交y轴于E,
根据平行线分线段成比例,
OF:FD=OC:CE=3:2
∵OC=3,
∴OE=5,
∴E(0,5)
∴直线EG解析式为:y= -x+5
联立方程,得:
解得:,
则点D的坐标为(1,4)或(2,3);
【点睛】
本题考查了二次函数综合,待定系数法求二次函数解析式,根据二次函数的性质求最值,平行线分线段成比例,掌握以上知识是解题的关键.
2、 (1)();
(2)销售单价为57元时,最大利润为2890万元;
(3)240
【解析】
【分析】
(1)用300减去减少的数量即可得到函数解析式,根据利润率不能超过50%求出自变量的取值范围;
(2)根据利润率公式得出函数解析式,由函数的性质得到最值;
(3)当w=2400时,解方程,求出解,得到使销售该电子产品每月获得的利润不低于2400万元,, 根据一次函数的性质求出销售量的最大值.
(1)
解: ,
∵,
∴,
∴();
(2)
解:,
当x<57时,w随x的增大而增大,
而,
∴当x=57即销售单价为57元时,w有最大值,最大利润为2890万元;
(3)
解:当w=2400时,,
解得,
∴使销售该电子产品每月获得的利润不低于2400万元,,
∵,y随着x的增大而减小,
∴当x=50时,销售量最多,最多销售量为万件,
∴每月的销售量最多应为240万件.
【点睛】
此题考查了二次函数的实际应用,二次函数的性质,一次函数的性质,二次函数的最值,熟练掌握二次函数的知识点及一次函数的知识点是解题的关键.
3、 (1)
(2)
【解析】
【分析】
(1)根据二次函数的对称轴及过一点,建立等式进行求解;
(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
(1)
解:对称轴为,
把代入得:,
解得:,
抛物线的解析式为;
(2)
解:设点D的坐标为,
点D在BC的下方,
,
,
,
,
,
是等腰三角形,
,
轴,
E的坐标为,
,
,
,
当时,的最大值是.
【点睛】
本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
4、 (1)y=x2-x-4;
(2)MN的最大值为;
(3)点Q的坐标为:(2-,1-)或(1-,-3).
【解析】
【分析】
(1)设抛物线为顶点式,用待定系数法求得函数解析式;
(2)先用两点间距离公式求得PC的长,再利用相似三角形将MN用含ME的式子表示,并把MN表示成关于M点横坐标的二次函数,从而求得MN的最大值;
(3)先设出点Q的坐标,再利用三角形全等用含点Q横坐标的式子表示E、F的坐标,最后根据点E、F在抛物线对称轴上时横坐标为1求出点Q的横坐标,进而求得点Q的坐标.
(1)
解:∵点A(1,-)是抛物线y=ax2+bx+c的顶点,
∴设抛物线的解析式为y=a(x-1)2-,
由于抛物线经过点B(-2,0),
∴a(-2-1)2-=0,
解得:a=,
∴二次函数的解析式为y=(x-1)2-=x2-x-4;
(2)
解:令x=0,则y=x2-x-4=4,
∴D点坐标为(0,-4),
设直线AD的函数解析式为y=kx-4,
把点A(1,-)代入得:-=k-4,
∴k=-,
∴直线AD的函数解析式为y=-x-4,
由于BP∥AD,故可设直线BP的函数解析式为:y=-x+b1,
又直线BP经过点B(-2,0),得:-×(-2)+ b1=0,
解得:b1=-1,
从而BP的解析式为y=-x-1,
解方程组,得:或,
∴该直线与抛物线的交点P的坐标为(3,-),
令y=0,则x2-x-4=0,
解得:.
∴点C(4,0),
∴PC=,
过点M作ME∥x轴交直线BP于点E,
设点M的坐标为(m,n),则点E的纵坐标为n,
∴点E的横坐标为-2n-2,
∴ME=-2n-2-m,
∵ME∥BC,MN∥PC,
∴∠E=∠PBC,∠MNE=∠BPC,
∴△MNE∽△CPB,
∴,
∴
,
∴当m=时,MN有最大值;
(3)
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K,
∴△BMQ≌△QNF≌△EKB,
∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|,
∴点F的坐标为(a-b,a+b+2),
点E的坐标为(-2-b,a+2),
当点F在抛物线的对称轴上时,a-b=1,
∴a-(a2-a-4)=1,
解得:a=2-(舍去正值),
得点Q的坐标为(2-,1-),
当点E在抛物线的对称轴上时,-2-b=1,
∴-2-(a2-a-4)=1,
解得:a=1-(舍去正值),
得点Q的坐标为(1-,-3).
故点Q的坐标为:(2-,1-)或(1-,-3).
【点睛】
本题考查了二次函数的性质及与相似三角形、正方形的综合,其中设出抛物线上一个点的坐标,根据条件表示出其它点或线段,再利用相应的知识点解决相关问题.
5、 (1)4
(2)2
(3)或m=
【解析】
【分析】
(1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
(2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
(3)先说明∠ABC=45°,然后分三种情况解答即可.
(1)
解:由抛物线开口向上,则m>0
令x=0,则y=-2,即C点坐标为(0,-2),OC=2
令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
∴OA=2,OB=m
∴AB=m+2
由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
∵当为直角三角形时,仅有∠ACB=90°
∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
∴AB=m+2=4
∴的面积为:·AB·OC=×4×2=4.
(2)
解:设BC所在直线的解析式为:y=kx+b
则 ,解得
∴BC所在直线的解析式为y=x-2
设直线AP的解析式为y=x+c
则有:0=×(-2)+c,即c=
∴线AP的解析式为y=x+
联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
∴点P的纵坐标为:
∴点P的坐标为(m+2,)
∴OQ=m+2
∴BQ=OQ-OB= m+2-m=2.
(3)
解:∵点P为抛物线上一动点(点P不与点C重合).
∴设P(x,)
∵在△ABC中,∠BAC=45°
∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
①a.若△ABC∽△BAP
∴
又∵BP=AC
∴△ABC∽△BAP不符合题意;
b. 若△ABP∽△BAC
∴
过P作PQ⊥x轴于点Q,则∠PQB=90°
∴∠BPQ=90°-∠PBQ=45°
∴PQ=BQ=m-x
由于PQ=
∴
∴
∴x-m=0或
∴x=m(舍去),x=-m-2
∴BQ=m-(-m-2)=2m+2
∵
∴
∴m2-4m-4=0,解得:m=或m=(舍去)
∴m=;
②当∠PAB=∠BAC=45°时,分两种情况讨论:
a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
b. 若△ABP∽△BAC,则 ,
过P作PQ⊥x轴于点Q,则∠PQA=90°
∴∠APQ=90°-∠PAB=45°
∴PQ=AQ=x+2
由于PQ=
∴
∴
∴x+2=0或
∴x=-2(舍去),x=2m
∴AQ= =2m+2
∵
∴
∴m2-4m-4=0,解得:m=(舍去)或m=
∴m=;
③当∠APB=∠BAC=45°时,分两种情况讨论:
a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
∵∠MAB≠∠PAB,
∴∠PAB≠∠ABC,
∴△PAB与△BAC不相似;
b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
∵∠PBA≠∠NBA,
∴∠PBA≠∠CBA,
∴△PAB与△BAC不相似;
综上,m的值为m=或m=.
【点睛】
本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.
初中冀教版第30章 二次函数综合与测试当堂达标检测题: 这是一份初中冀教版第30章 二次函数综合与测试当堂达标检测题,共33页。试卷主要包含了抛物线的顶点为,已知平面直角坐标系中有点A,一次函数与二次函数的图象交点等内容,欢迎下载使用。
冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题: 这是一份冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共32页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练,共26页。

