|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项攻克试题
    立即下载
    加入资料篮
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项攻克试题01
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项攻克试题02
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数专项攻克试题03
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中第30章 二次函数综合与测试同步练习题

    展开
    这是一份初中第30章 二次函数综合与测试同步练习题,共36页。试卷主要包含了同一直角坐标系中,函数和,对于二次函数,下列说法正确的是,已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.

    A.1个 B.2个 C.3个 D.4个
    2、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    3、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )

    A.①④ B.③⑤ C.②⑤ D.③④
    4、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
    A. B.
    C. D.
    5、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    6、已知点,,都在函数的图象上,则( )
    A. B. C. D.
    7、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是(   )
    A.或6 B.或6 C.或6 D.或
    8、在抛物线的图象上有三个点,,,则、、的大小关系为( )
    A. B. C. D.
    9、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
    A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
    10、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、若将二次函数y=x2﹣2x+3配方为y=(x﹣h)2+k的形式,则y=___________.
    2、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).
    3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.

    4、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.

    5、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)

    三、解答题(5小题,每小题10分,共计50分)
    1、已知抛物线经过点,与y轴交于点C,连接.

    (1)求抛物线的解析式;
    (2)在直线上方抛物线上取一点P,过点P作轴交边于点Q,求的最大值;
    (3)在直线上方抛物线上取一点D,连接.交于点F,当时,求点D的坐标.
    2、红星公司销售自主研发的一种电子产品,已知该电子产品的生产成本为每件40元,规定销售单价不低于44元,且销售每件产品的利润率不能超过50%,试销售期间发现,当销售单价定为44元时,每月可售出300万件,销售单价每上涨1元,每月销售量减少10万件,现公司决定提价销售,设销售单价为x元,每月销售量为y元.
    (1)请写出y与x之间的函数关系式和自变量x的取值范围;
    (2)当电子产品的销售单价定为多少元时,公司每月销售电子产品获得的利润w最大?最大利润是多少万元?
    (3)若公司要使销售该电子产品每月获得的利润不低于2400万元,则每月的销售量最多应为多少万件?
    3、抛物线与x轴交和点B,交y轴于点C,对称轴为直线.

    (1)求抛物线的解析式;
    (2)如图,若点D为线段BC下方抛物线上一点,过点D作轴于点E,再过点E作于点F,请求出的最大值.
    4、如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,-),B(-2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.

    (1)求二次函数解析式;
    (2)如图1,点P是第四象限抛物线上一点,且满足BP∥AD,抛物线交x轴于点C.M为直线AB下方抛物线上一点,过点M作PC的平行线交BP于点N,求MN最大值;
    (3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.
    5、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).

    (1)当为直角三角形时,求的面积
    (2)如图,当时,过点P作轴于点Q,求BQ的长.
    (3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
    【详解】
    解:∵抛物线的对称轴为x=-1,
    所以B(1,0)关于直线x=-1的对称点为A(-3,0),
    ∴AB=1-(-3)=4,故①正确;
    由图象可知:抛物线与x轴有两个交点,
    ∴Δ=b2-4ac>0,故②正确;
    由图象可知:抛物线开口向上,
    ∴a>0,
    由对称轴可知:−<0,
    ∴b>0,故③正确;
    当x=-1时,y=a-b+c<0,故④正确;
    所以,正确的结论有4个,
    故选:D.
    【点睛】
    本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质.
    2、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    3、D
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
    ②由抛物线的开口方向向下可推出a<0;
    因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
    ③由图可知函数经过(-1,0),∴当,,故③正确;
    ④对称轴为x=,∴,故④正确;
    ⑤当y=2时,,故⑤错误;
    ∴正确的是③④
    故选:D
    【点睛】
    二次函数y=ax2+bx+c系数符号的确定:
    (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
    (2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
    (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
    (4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
    4、D
    【解析】
    【分析】
    根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.
    【详解】
    解:选项A:由的图象可得:
    由的图象可得:则 故A不符合题意;
    选项B:由的图象可得:
    由的图象可得:则
    而抛物线的对称轴为: 则 故B不符合题意;
    选项C:由的图象可得:
    由的图象可得:则 故C不符合题意;
    选项D:由的图象可得:
    由的图象可得:则
    而抛物线的对称轴为: 则 故D符合题意;
    故选D
    【点睛】
    本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.
    5、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    6、C
    【解析】
    【分析】
    把点的坐标分别代入函数解析式可分别求得、、,再比较其大小即可.
    【详解】
    解:点,,都在函数的图象上,
    ,,,

    故选:C.
    【点睛】
    本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.
    7、C
    【解析】
    【分析】
    表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.
    【详解】
    解:∵y=-x2+mx,
    ∴抛物线开口向下,抛物线的对称轴为x=-,
    ①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,
    ∴-(-2)2-2m=5,
    解得:m=-;
    ②当≥1,即m≥2时,当x=1时,函数最大值为5,
    ∴-12+m=5,
    解得:m=6.
    ③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,
    ∴-()2+m•=5
    解得m=2(舍去)或m=-2(舍去),
    综上所述,m=-或6,
    故选:C.
    【点睛】
    本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.
    8、C
    【解析】
    【分析】
    把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
    【详解】
    解:把三个点,,的横坐标代入解析式得,
    ;;;
    所以,,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
    9、D
    【解析】
    【分析】
    由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
    【详解】
    解:二次函数的图象全部在轴的上方,
    ,,



    ,.
    故选:D.
    【点睛】
    本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
    10、B
    【解析】
    【分析】
    根据增长率问题的计算公式解答.
    【详解】
    解:第2年的销售量为,
    第3年的销售量为,
    故选:B.
    【点睛】
    此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
    二、填空题
    1、
    【解析】
    【分析】
    利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.
    【详解】
    y=x2﹣2x+3=(x2﹣2x+1)+2=(x﹣1)2+2
    故本题答案为:y=(x﹣1)2+2.
    【点睛】
    本题考查了把二次函数的一般式化为顶点式,关键是配方法的运用.
    2、<
    【解析】
    【分析】
    根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断的大小关系.
    【详解】
    解:∵二次函数y=(x﹣1)2,,开口向上,对称轴为
    又点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,


    故答案为:
    【点睛】
    本题考查了二次函数图象的性质,掌握二次函数图象的性质是解题的关键.
    3、##
    【解析】
    【分析】
    分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
    【详解】
    解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,

    可知:顶点B(9,12),抛物线经过原点,
    设抛物线的解析式为y=a(x-9)2+12,
    将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
    故抛物线的解析式为:y=-(x−9)²+12,
    ∵PC=12,=1:2,
    ∴点C的坐标为(12,0),AC=6,
    即可得点A的坐标为(12,6),
    当x=12时,y=−(12−9)²+12==CE,
    ∵E在A的正上方,
    ∴AE=CE-AC=-6=,
    故答案为:.
    【点睛】
    本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
    4、75
    【解析】
    【分析】
    根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
    【详解】
    解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,
    ∴OA25= •n=25,A25B25=n,
    ∵B25C25=8C25A25,
    ∴C25(25,),
    ∵点C25在上,
    ∴,
    解得n=75.
    故答案为:75.
    【点睛】
    本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.
    5、
    【解析】
    【分析】
    根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
    【详解】
    ∵与x轴交于A,B两点(点A在点B左侧),
    令,则,
    解得:,.
    ∴A点坐标为(-1,0).
    ∵直线经过点A,
    ∴,
    解得:,
    ∴该直线解析式为.
    当时,直线解析式为,
    令,则,
    ∴的坐标为(0,n).
    联立,即,
    解得:,.
    ∴的横坐标为n+1.
    将代入中,得:,
    ∴的坐标为().




    故答案为:.
    【点睛】
    本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
    三、解答题
    1、 (1)
    (2)
    (3)(1,4)或(2,3)
    【解析】
    【分析】
    (1)根据题意待定系数法求二次函数解析式即可;
    (2)根据二次函数解析式求得点得到坐标,进而求得直线的解析式,设P点坐标为,则Q点坐标为,进而表示出的长,根据二次函数的性质求得最大值即可;
    (3)过点D作BC的平行线交x轴于G,交y轴于E,根据∆COF与∆CDF共高,面积比转化为底边比,求得,根据平行线分线段成比例求得,进而求得的长,即可求得的坐标,根据一次函数的平移可得直线EG解析式为:y= -x+5,联立直线与抛物线解析式,即可求得点的坐标
    (1)
    抛物线经过点,

    解得
    抛物线的解析式为:
    (2)
    抛物线的解析式为:
    令,则


    设直线的解析式为

    解得
    直线BC的解析式为:
    过点P作PQ⊥x轴交BC于点Q,设P点坐标为,

    则Q点坐标为,



    ∴PQ的最大值是.
    (3)
    ∵∆COF与∆CDF共高,面积比转化为底边比,
    OF:DF=S△COF:S△CDF=3:2
    过点D作BC的平行线交x轴于G,交y轴于E,
    根据平行线分线段成比例,
    OF:FD=OC:CE=3:2

    ∵OC=3,
    ∴OE=5,
    ∴E(0,5)
    ∴直线EG解析式为:y= -x+5
    联立方程,得:
    解得:,
    则点D的坐标为(1,4)或(2,3);
    【点睛】
    本题考查了二次函数综合,待定系数法求二次函数解析式,根据二次函数的性质求最值,平行线分线段成比例,掌握以上知识是解题的关键.
    2、 (1)();
    (2)销售单价为57元时,最大利润为2890万元;
    (3)240
    【解析】
    【分析】
    (1)用300减去减少的数量即可得到函数解析式,根据利润率不能超过50%求出自变量的取值范围;
    (2)根据利润率公式得出函数解析式,由函数的性质得到最值;
    (3)当w=2400时,解方程,求出解,得到使销售该电子产品每月获得的利润不低于2400万元,, 根据一次函数的性质求出销售量的最大值.
    (1)
    解: ,
    ∵,
    ∴,
    ∴();
    (2)
    解:,
    当x<57时,w随x的增大而增大,
    而,
    ∴当x=57即销售单价为57元时,w有最大值,最大利润为2890万元;
    (3)
    解:当w=2400时,,
    解得,
    ∴使销售该电子产品每月获得的利润不低于2400万元,,
    ∵,y随着x的增大而减小,
    ∴当x=50时,销售量最多,最多销售量为万件,
    ∴每月的销售量最多应为240万件.
    【点睛】
    此题考查了二次函数的实际应用,二次函数的性质,一次函数的性质,二次函数的最值,熟练掌握二次函数的知识点及一次函数的知识点是解题的关键.
    3、 (1)
    (2)
    【解析】
    【分析】
    (1)根据二次函数的对称轴及过一点,建立等式进行求解;
    (2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.
    (1)
    解:对称轴为,
    把代入得:,
    解得:,
    抛物线的解析式为;
    (2)
    解:设点D的坐标为,
    点D在BC的下方,





    是等腰三角形,

    轴,
    E的坐标为,



    当时,的最大值是.
    【点睛】
    本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.
    4、 (1)y=x2-x-4;
    (2)MN的最大值为;
    (3)点Q的坐标为:(2-,1-)或(1-,-3).
    【解析】
    【分析】
    (1)设抛物线为顶点式,用待定系数法求得函数解析式;
    (2)先用两点间距离公式求得PC的长,再利用相似三角形将MN用含ME的式子表示,并把MN表示成关于M点横坐标的二次函数,从而求得MN的最大值;
    (3)先设出点Q的坐标,再利用三角形全等用含点Q横坐标的式子表示E、F的坐标,最后根据点E、F在抛物线对称轴上时横坐标为1求出点Q的横坐标,进而求得点Q的坐标.
    (1)
    解:∵点A(1,-)是抛物线y=ax2+bx+c的顶点,
    ∴设抛物线的解析式为y=a(x-1)2-,
    由于抛物线经过点B(-2,0),
    ∴a(-2-1)2-=0,
    解得:a=,
    ∴二次函数的解析式为y=(x-1)2-=x2-x-4;
    (2)
    解:令x=0,则y=x2-x-4=4,
    ∴D点坐标为(0,-4),
    设直线AD的函数解析式为y=kx-4,
    把点A(1,-)代入得:-=k-4,
    ∴k=-,
    ∴直线AD的函数解析式为y=-x-4,
    由于BP∥AD,故可设直线BP的函数解析式为:y=-x+b1,
    又直线BP经过点B(-2,0),得:-×(-2)+ b1=0,
    解得:b1=-1,
    从而BP的解析式为y=-x-1,
    解方程组,得:或,
    ∴该直线与抛物线的交点P的坐标为(3,-),
    令y=0,则x2-x-4=0,
    解得:.
    ∴点C(4,0),
    ∴PC=,
    过点M作ME∥x轴交直线BP于点E,

    设点M的坐标为(m,n),则点E的纵坐标为n,
    ∴点E的横坐标为-2n-2,
    ∴ME=-2n-2-m,
    ∵ME∥BC,MN∥PC,
    ∴∠E=∠PBC,∠MNE=∠BPC,
    ∴△MNE∽△CPB,
    ∴,



    ∴当m=时,MN有最大值;
    (3)
    解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K,

    ∴△BMQ≌△QNF≌△EKB,
    ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|,
    ∴点F的坐标为(a-b,a+b+2),
    点E的坐标为(-2-b,a+2),
    当点F在抛物线的对称轴上时,a-b=1,
    ∴a-(a2-a-4)=1,
    解得:a=2-(舍去正值),
    得点Q的坐标为(2-,1-),
    当点E在抛物线的对称轴上时,-2-b=1,
    ∴-2-(a2-a-4)=1,
    解得:a=1-(舍去正值),
    得点Q的坐标为(1-,-3).
    故点Q的坐标为:(2-,1-)或(1-,-3).
    【点睛】
    本题考查了二次函数的性质及与相似三角形、正方形的综合,其中设出抛物线上一个点的坐标,根据条件表示出其它点或线段,再利用相应的知识点解决相关问题.
    5、 (1)4
    (2)2
    (3)或m=
    【解析】
    【分析】
    (1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
    (2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
    (3)先说明∠ABC=45°,然后分三种情况解答即可.
    (1)
    解:由抛物线开口向上,则m>0
    令x=0,则y=-2,即C点坐标为(0,-2),OC=2
    令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
    ∴OA=2,OB=m
    ∴AB=m+2
    由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
    ∵当为直角三角形时,仅有∠ACB=90°
    ∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
    ∴AB=m+2=4
    ∴的面积为:·AB·OC=×4×2=4.
    (2)
    解:设BC所在直线的解析式为:y=kx+b
    则 ,解得
    ∴BC所在直线的解析式为y=x-2
    设直线AP的解析式为y=x+c
    则有:0=×(-2)+c,即c=
    ∴线AP的解析式为y=x+
    联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
    ∴点P的纵坐标为:
    ∴点P的坐标为(m+2,)
    ∴OQ=m+2
    ∴BQ=OQ-OB= m+2-m=2.
    (3)
    解:∵点P为抛物线上一动点(点P不与点C重合).
    ∴设P(x,)
    ∵在△ABC中,∠BAC=45°
    ∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
    ①a.若△ABC∽△BAP

    又∵BP=AC
    ∴△ABC∽△BAP不符合题意;

    b. 若△ABP∽△BAC

    过P作PQ⊥x轴于点Q,则∠PQB=90°
    ∴∠BPQ=90°-∠PBQ=45°
    ∴PQ=BQ=m-x
    由于PQ=


    ∴x-m=0或
    ∴x=m(舍去),x=-m-2
    ∴BQ=m-(-m-2)=2m+2


    ∴m2-4m-4=0,解得:m=或m=(舍去)
    ∴m=;

    ②当∠PAB=∠BAC=45°时,分两种情况讨论:
    a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
    b. 若△ABP∽△BAC,则 ,
    过P作PQ⊥x轴于点Q,则∠PQA=90°
    ∴∠APQ=90°-∠PAB=45°
    ∴PQ=AQ=x+2
    由于PQ=


    ∴x+2=0或
    ∴x=-2(舍去),x=2m
    ∴AQ= =2m+2


    ∴m2-4m-4=0,解得:m=(舍去)或m=
    ∴m=;

    ③当∠APB=∠BAC=45°时,分两种情况讨论:
    a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
    ∵∠MAB≠∠PAB,
    ∴∠PAB≠∠ABC,
    ∴△PAB与△BAC不相似;

    b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
    ∵∠PBA≠∠NBA,
    ∴∠PBA≠∠CBA,
    ∴△PAB与△BAC不相似;

    综上,m的值为m=或m=.
    【点睛】
    本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.

    相关试卷

    初中冀教版第30章 二次函数综合与测试当堂达标检测题: 这是一份初中冀教版第30章 二次函数综合与测试当堂达标检测题,共33页。试卷主要包含了抛物线的顶点为,已知平面直角坐标系中有点A,一次函数与二次函数的图象交点等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题: 这是一份冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共32页。试卷主要包含了抛物线的顶点为等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练,共26页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map