所属成套资源:2023-2024学年八年级数学上册精选专题培优讲与练(人教版)
培优专题17 分式方程的类型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版)
展开
这是一份培优专题17 分式方程的类型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版),文件包含培优专题17分式方程的类型-原卷版docx、培优专题17分式方程的类型-解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
培优专题17 分式方程的类型
◎类型一:解分式方程分式方程解方程的步骤:①利用等式的性质去分母,将分式方程转换为整式方程②解整式方程③验根--检验整式方程解得的根是否符合分式方程④作答1.(2022·河南·上蔡县第六初级中学八年级阶段练习)解分式方程
时,去分母得( )A.
B.
C.
D.
2.(2022·辽宁沈阳·八年级期末)方程
的解为( )A.
B.
C.
D.
3.(2021·湖北襄阳·模拟预测)分式方程
的解是_____.4.(2022·山西·运城市盐湖区教育科技局教学研究室八年级期末)在实数范围内定义一种运算☆,其规则为
,根据这个规则
的解为________.5.(2022·河南·西峡县城区二中八年级阶段练习)解方程:(1)
.(2)
6.(2022·山东·济南市天桥区泺口实验学校八年级期中)解方程.(1)
-
=0(2)
-
=1(3)
+3=
◎类型二:解含参数的分式方程的运算一般将解直接代入原式,得到一个新的方程解出来即可,但要注意满足条件7.(2022·河南·西峡县城区二中八年级阶段练习)关于x的方程
的解为x=1,则a的值为( )A.2 B.3 C.-1 D.-38.(2021·河北·南皮县桂和中学八年级阶段练习)若关于
的方程
的解为
,则
等于( )A.
B.
C.
D.
9.(2022·黑龙江·大庆市万宝学校八年级期末)已知a2﹣6a+1=0且
=2,则m=________________10.(2021·黑龙江·肇源县第五中学八年级期中)已知关于x的方程
的解是x=-1,则a=_______11.(2022·河南·商水县平店乡第一初级中学八年级阶段练习)已知关于x的方程:
=
﹣3.(1)当方程的解为正整数时,求整数m的值;(2)当方程的解为正数时,求m的取值范围. 12.(2022·河南·商水县平店乡第一初级中学八年级阶段练习)复习备考时,王老师在黑板上写了一道分式化简题的正确计算结果,随后用于遮住了原题目的一部分,如图:
(1)求被手遮住部分的代数式,并将其化简;(2)原代数式的值能等于3吗?请说明理由.◎类型三:已知正负情况求参数 13.(2022·山东烟台·八年级期中)已知关于
的分式方程
的解是非正数,则
的取值范围是( )A.
B.
C.
D.
14.(2022·重庆·模拟预测)若数a使关于x的分式方程
有非负整数解,且使关于y的不等式组
至少有3个整数解,则符合条件的所有整数a的和是( )A.﹣5 B.﹣3 C.0 D.215.(2022·河南·西峡县城区二中八年级阶段练习)已知分式方程
的解为非负数,求m的取值范围.16.(2022·河南新乡·八年级期中)若关于x的方程
有非负数解,求m的取值范围.17.(2022·湖南·衡阳市实验中学八年级期中)若关于x的分式方程
的解为正数,求实数m的取值范围.18.(2022·河北·石家庄市栾城区教育局教研室八年级期末)若关于x的分式方程
的解为正数,求正整数m的值. ◎类型四:无解或增根问题(1)方程无解,即方程的根为增根;(2)方程的解为正值,先求解出含有字母的方程根,令这个根>0,求解出字母取值范围;(3)方程的解为负值,先求解出含有字母的方程根,令这个根<0,求解出字母取值范围方程有增根,则这个根使得分式的分母为0.利用这个条件,我们可以先求解出增根的情况,在根据题意求解出其他字母的值。19.(2021·四川乐山·三模)若关于x的分式方程
无解,则a的值为( )A.1 B.
C.1或
D.以上都不是20.(2021·黑龙江·肇源县第五中学八年级期中)关于x的方程
有增根,那么a的值为( )A.2 B.-2 C.1 D.021.(2022·江苏·宜兴外国语学校八年级阶段练习)已知关于
的分式方程
无解,则
的值为_________.22.(2022·浙江宁波·七年级期末)若关于
的分式方程
有增根,则
的值为______.23.(2022·重庆·黔江区育才初级中学校八年级期中)已知关于x的分式方程
(1)已知m=4,求方程的解;(2)若该分式方程无解,试求m的值.24.(2022·山东淄博·八年级期末)解方程:(1)解方程:
;(2)解关于x的方程
过程中产生了增根,试判断k的值.
相关试卷
这是一份培优专题18 分式方程应用题的常见类型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版),文件包含培优专题18分式方程应用题的常见类型-原卷版docx、培优专题18分式方程应用题的常见类型-解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份培优专题16 分式的运算-2023-2024学年八年级数学上册精选专题培优讲与练(人教版),文件包含培优专题16分式的运算-原卷版docx、培优专题16分式的运算-解析版docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份培优专题15 因式分解的类型-2023-2024学年八年级数学上册精选专题培优讲与练(人教版),文件包含培优专题15因式分解的类型-原卷版docx、培优专题15因式分解的类型-解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。

