


福建省泉州市德化县2022-2023学年八年级下学期期末数学试题(含答案)
展开这是一份福建省泉州市德化县2022-2023学年八年级下学期期末数学试题(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年春八年级数学达标测试
(满分:150分;考试时间:120分钟)
友情提示:请把所有答案填写(涂)在答题卡上,不要错位、越界答题。
一、选择题(每小题4分,满分40分)
1.下列式子变形正确的是( )
A. B. C. D.
2.清代诗人袁枚创作了一首诗《苔》:“白日不到处,青春恰自来.苔花如米小,也学忔丹开.”歌颂了苔在恶劣环境下仍能绽放属于自己的美丽.若苔花的花粉粒直径约为0.0000084米,用科学记数法表示0.0000084为( )
A. B. C. D.
3.下列命题的逆命题正确的是( )
A.平行四边形的两组对边分别平行 B.对顶角相等
C.矩形是平行四边形 D.全等三角形的对应角相等
4.在平行四边形中,的平分线交于点,则的长为( )
A.4 B.3 C.2 D.1
5.在1000米中长跑考试中,小明开始慢慢加速,当达到某一速度后保持匀速,最后200米时奋力冲刺跑完全程,下列最符合小明跑步时的速度y(单位:米/分)与时间x(单位:分)之间的大致图象的是( )
A. B. C. D.
6.平行四边形的对角线交于点,下列条件中,不能判定平行四边形是菱形的是( )
A. B. C. D.平分
7.一次函数和的图象如图,甲、乙两位同学给出的下列结论:
甲说:方程的解是;
乙说:当时,.
其中正确的结论的是( )
A.甲乙都正确 C.乙正确,甲错误
B.甲正确,乙错误 D.甲乙都错误
8.无论实数为何值,直线与直线的交点都不可能出现任平面直角坐标系中的( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
9.若平行四边形的一边长为5,则它的对角线长可能是( )
A.4和6 B.2和12 C.4利8 D.4和3
10.在反比例函数中,当时,的最大值与最小值之差为4,则值为( )
A.8 B.6或 C.6 D.5
二、填空题(每小题4分,满分24分)
11.两组数据与的平均数都是7,若将这两组数据合并成一组数据,则这组新数据的中位数为_________.
12.已知菱形的两条对角线的长分别是和,那么菱形的边长等于_________.
13.如图,在平面直角坐标系中,若将点向右平移后,其对应点恰好落在反比例函数的图象上,已知点,则的面积为_________.
14.若关于的分式方程有增根,则的值为_________.
15.已知为大于1的正整数,且代数式的值也是整数,则可取的最大整数值是_________.
16.平面直角坐标系中,若直线经过和两点,则代数式的值为_________.
三、解答题(共9小题,满分86分)
17.(8分)
计算:
18.(8分)
解分式方程:
19.(8分)
先化简再求值:,其中.
20.(8分)
一客车和一出租车分别从甲、乙两地相向而行,同时出发,设客车离甲地距离为千米,出租车离甲地距离为千米,两车行驶的时间为小时,关于的函数图象如图所示:
(1)根据图象,直接写出关于的关系式;
(2)求经过多少小时,两车之间的距离为100千米?
21.(8分)
如图1,已知平行四边形,点为边的中点,连结并延长交的延长线与点,连结.
(1)求证:四边形是平行四边形.
(2)如图2,当时,求的面积.
22.(10分)
为了从甲、乙两位同学中选拔一人参加法制知识竞赛,举行了6次对战赛,根据两位同学6次对战赛的成绩,分别绘制了如下统计图.
(1)填写下列表格(将数字写在横线上)
| 平均数(分) | 中位数(分) | 众数(分) |
甲 | _________ | 91 | 92 |
乙 | 90 | _________ | _________ |
(2)已知乙同学6次成绩的方差为(平方分),求出甲同学6次成绩的方差;方差公式:
(3)你认为选择哪一位同学参加知识竞赛比较好?请说明理由.
23.(10分)
某企业员工感冒后,到药店买了一种新型感冒药,按使用说明书服用后,血液中的约物浓度(微克/亳升)与服药后时间(小时)之间的函数关系如下图所示,其中,当时,满足的关系式;当时,与成反比例.
(1)求的值,并求当时,与的函数关系式;
(2)若血液中药物浓度不低于2.5微克/敦升的持续时间超过5.5小时,则称药物治疗有效,请通过计算说明用这种新药治疗是否有效吗?
24.(12分)
如图,为正方形对角线的交点,点为线段上一动点(不与两点重合),连结,将绕点逆时针旋转后得到,过点作交于点,连结.
(1)试证:四边形为正方形.
(2)若点恰好是边的中点,正方形的边长,求线段的长.
25.(14分)
直线和交于点为常数,且,且两直线分别与轴交于两点.
(1)试说明的面积为定值.
(2)当的周长最小时,求点的坐标.
(3)当点恰好在轴上时,将直线绕点逆时针旋转后交轴于点,求的面积.
2023年春八年级数学达标测试参考答案
一、选择题(每小题4分,满分40分)
1.C 2.D 3.A 4.D 5.A 6.A 7.B 8.C 9.C 10.B
二、填空题(每小题4分,满分24分)
11.6 12.13 13.3 14.3 15.8 16.4
三、解答题(共9小题,共86分)
17.解:
原式=·········································································6分
=············································································8分
18.解:
去分母得:,····································································4分
解得:,·······································································6分
经检验:是原方程的解.
原方程的解为···································································8分
19.解:
原式=
=············································································4分
=
=
=············································································6分
当时,原式=···································································8分
20.解:
(1) ···········································································2分
·············································································4分
(2) 两车相遇前,两车之间的距离为100千米,
解得:········································································6分
两车相遇后,两车之间的距离为100千米,
,解得:
综上所述,经过小时或小时,两车之间的距离为100千米··································8分
21.
(1)证明:四边形ABCD是平行四边形,
又点E为AD的中点,
AE=DE,
在AEF与DEC中,
≌,
,
又
四边形ACDF是平行四边形·························································4分
(2)四边形ABCD是平行四边形
AD=BC,AB=CD,
CF=BC,AD=CF,
由(1)证得四边形ACDF是平行四边形
四边形ACDF是矩形,
FAC=90°,
CAB=180°FAC=90°,
是直角三角形,·································································6分
四边形ACDF是矩形,
AF=CD=AB=1,
.···········································································8分
22. (1) ①90 ②87.5 ③85·····················································3分
(2) 甲同学6次成绩的方差:
=
=···········································································6分
(3)∵甲、乙两同学成绩平均数相同,但甲的中位数比乙的大,且甲的方差比乙的方差小
∴选择甲同学参加知识竞赛比较好.················································10分
23.解:
(1)由图象可知,将(3,6)代入函数,
得6=3t,解得t=2,·······························································2分
当时,设与的函数关系式为
将(3,6)代入,得,
, ············································································5分
(2)将代入函数得,解得,
将代入函数得,
解得,
············································································10分
这种新药治疗有效.
24.(1)证明:过点E作ENAD于N,EN交BC于H,过点E作EMAB于M,
则四边形AMEN为矩形,MEN=90°···················································2分
平分BAD, EM=EN,
于E,
BEG=90°,
1=NEM-GEM=90°-GEM,
2=BEG-MEG=90°-GEM,
1=2.
ENG=EMB,
(ASA).
EG=EB········································································4分
由旋转知,FB=EB,EBF=90°,
FB=GE,EBF+BEG=180°, ,
四边形BEGF为平行四边形,
又FB=EB,FBE=90°,
四边形BEGF为正方形.····························································6分
(2)连结ED,由正方形对称性可知ED=EB,
EB=EG,ED=EG,又
.
G为AD的中点,BC=4a
GN=ND=,HC=ND=·····························································10分
又EHC为等腰直角三角形,
EC=HC=······································································12分
25.解:(1)在中,令=0,得,
在中,令=0,得.·······························································2分
, .
,即点A为直线上的一动点.·······················································4分
·············································································5分
(2)作点B关于直线的对称点,则点(4,3),连结交直线于点A,
设, 则,
,
令,得,
·············································································9分
(3)过点B作BEAB交AD于E,过点E作EH轴于H点,
过点B作BG⊥EH于G,过点A作AF⊥GB于F,
,
,
,
,,
.
在和中,
,
.
,
············································································12分
设直线则,
, .
令,得, ,
.············································································14分
提示:本题也过点B作BEAD于E,再过点E作EH轴.
相关试卷
这是一份2022-2023学年福建省泉州市德化县七下数学期末考试试题含答案,共6页。试卷主要包含了一元二次方程 x2= x的根是,下列分式中,是最简分式的是等内容,欢迎下载使用。
这是一份2022-2023学年福建省泉州市德化县八年级(下)期末数学试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年福建省泉州市德化县中考二模数学试题,共11页。试卷主要包含了请将各题答案填写在答题卡上,下列运算正确的是,分式方程的解是等内容,欢迎下载使用。