2023年中考数学精选真题实战测试48 图形的相似 B
展开
2023年中考数学精选真题实战测试48 图形的相似 B
一、单选题(每题3分,共30分)(共10题;共30分)
1.(3分)(2022·兰州)已知 , ,若 ,则 ( )
A.4 B.6 C.8 D.16
2.(3分)(2022·雅安)如图,在△ABC中,D,E分别是AB和AC上的点,DE∥BC,若=,那么=( )
A. B. C. D.
3.(3分)(2022·连云港)△ABC的三边长分别为2,3,4,另有一个与它相似的三角形 DEF ,其最长边为12,则 △DEF的周长是( )
A.54 B.36 C.27 D.21
4.(3分)(2022·重庆)如图,△ABC 与△DEF 位似,点 O 是它们的位似中心,且相似比为 1:2,则△ABC 与△DEF 的周长之比是( )
A.1:2 B.1:4 C.1:3 D.1:9
5.(3分)(2022·鄂尔多斯)如图,菱形ABCD中,AB=2,∠ABC=60°,矩形BEFG的边EF经过点C,且点G在边AD上,若BG=4,则BE的长为( )
A. B. C. D.3
6.(3分)(2022·贵阳)如图,在中,是边上的点,,,则与的周长比是( )
A. B. C. D.
7.(3分)(2022·海南)如图,点,将线段平移得到线段,若,则点D的坐标是( )
A. B. C. D.
8.(3分)(2022·扬州)如图,在中,,将以点为中心逆时针旋转得到,点在边上,交于点.下列结论:①;②平分;③,其中所有正确结论的序号是( )
A.①② B.②③ C.①③ D.①②③
9.(3分)(2022·黔西)如图,在平面直角坐标系中,矩形ABCD的顶点A在第一象限,B,D分别在y轴上,AB交x轴于点E,轴,垂足为F.若,.以下结论正确的个数是( )
①;②AE平分;③点C的坐标为;④;⑤矩形ABCD的面积为.
A.2个 B.3个 C.4个 D.5个
10.(3分)(2022·连云港)如图,将矩形 沿着 、 、 翻折,使得点 、 、 恰好都落在点 处,且点 、 、 在同一条直线上,同时点 、 、 在另一条直线上.小炜同学得出以下结论:
① ;② ;③ ;④ ;⑤ .
其中正确的是( )
A.①②③ B.①③④ C.①④⑤ D.②③④
二、填空题(每空3分,共18分)(共6题;共18分)
11.(3分)(2022·黔西)如图,在平面直角坐标系中,与位似,位似中心是坐标原点O.若点,点,则与周长的比值是 .
12.(3分)(2022·锦州)如图,在正方形中,E为的中点,连接交于点F.若,则的面积为 .
13.(3分)(2022·娄底)如图,已知等腰的顶角的大小为,点D为边上的动点(与、不重合),将绕点A沿顺时针方向旋转角度时点落在处,连接.给出下列结论:①;②;③当时,的面积取得最小值.其中正确的结论有 (填结论对应的序号).
14.(3分)(2022·杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB= cm.
15.(3分)(2022·四川)如图,CD是平面镜,光线从A点出发经CD上点O反射后照射到B点,若入射角为α,反射角为β(反射角等于人射角),AC⊥CD于点C,BD⊥CD于点D,且AC=3,BD=6,CD=12,则tanα的值为 .
16.(3分)(2022·鞍山)如图,在正方形中,点为的中点,,交于点,于点,平分,分别交,于点,,延长交于点,连接.下列结论:①;②;③;④.其中正确的是 .(填序号即可).
三、解答题(共8题,共72分)(共8题;共72分)
17.(6分)(2022·菏泽)如图,在中,,E是边AC上一点,且,过点A作BE的垂线,交BE的延长线于点D,求证:.
18.(8分)(2022·江西)如图,四边形为菱形,点E在的延长线上,.
(1)(4分)求证:;
(2)(4分)当时,求的长.
19.(8分)(2021·雅安)如图, 为等腰直角三角形,延长 至点B使 ,其对角线 , 交于点E.
(1)(4分)求证: ;
(2)(4分)求 的值.
20.(8分)(2022·常德)在四边形中,的平分线交于,延长到使,是的中点,交于,连接.
(1)(4分)当四边形是矩形时,如图,求证:①;②.
(2)(4分)当四边形是平行四边形时,如图,(1)中的结论都成立,请给出结论②的证明.
21.(10分)(2022·黄冈)问题背景:
一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知是的角平分线,可证小慧的证明思路是:如图2,过点作,交的延长线于点,构造相似三角形来证明.
尝试证明:
(1)(4分)请参照小慧提供的思路,利用图2证明:;
(2)(6分)应用拓展:
如图3,在中,,是边上一点.连接,将沿所在直线折叠,点恰好落在边上的点处.
若,,求的长;
若,,求的长用含,的式子表示.
22.(10分)(2022·烟台)
(1)(3分)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
(2)(3分)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.
(3)(4分)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.
①求的值;
②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
23.(10分)(2022·孝感)问题背景:
一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD是△ABC的角平分线,可证=.小慧的证明思路是:如图2,过点C作CE∥AB,交AD的延长线于点E,构造相似三角形来证明=.
(1)(4分)尝试证明:请参照小慧提供的思路,利用图2证明=;
(2)(6分)应用拓展:如图3,在Rt△ABC中,∠BAC=90°,D是边BC上一点.连接AD,将△ACD沿AD所在直线折叠,点C恰好落在边AB上的E点处.
①若AC=1,AB=2,求DE的长;
②若BC=m,∠AED=,求DE的长(用含m,的式子表示).
24.(12分)(2022·襄阳)矩形ABCD中,=(k>1),点E是边BC的中点,连接AE,过点E作AE的垂线EF,与矩形的外角平分线CF交于点F.
(1)(4分)【特例证明】如图(1),当k=2时,求证:AE=EF;
小明不完整的证明过程如下,请你帮他补充完整.
证明:如图,在BA上截取BH=BE,连接EH. ∵k=2, ∴AB=BC. ∵∠B=90°,BH=BE, ∴∠1=∠2=45°, ∴∠AHE=180°-∠1=135°. ∵CF平分∠DCG,∠DCG=90°, ∴∠3=∠DCG=45°. ∴∠ECF=∠3+∠4=135°. ∴…… (只需在答题卡对应区域写出剩余证明过程) |
(2)(4分)【类比探究】如图(2),当k≠2时,求的值(用含k的式子表示);
(3)(4分)【拓展运用】如图(3),当k=3时,P为边CD上一点,连接AP,PF,∠PAE=45°,,求BC的长.
答案解析部分
1.【答案】A
2.【答案】D
3.【答案】C
4.【答案】A
5.【答案】B
6.【答案】B
7.【答案】D
8.【答案】D
9.【答案】C
10.【答案】B
11.【答案】2
12.【答案】3
13.【答案】①②③
14.【答案】9.88
15.【答案】
16.【答案】①③④
17.【答案】证明:∵
∴∠C=∠BEC,
∵∠BEC=∠AED,
∴∠AED=∠C,
∵AD⊥BD,
∴∠D=90°,
∵,
∴∠D=∠ABC,
∴.
18.【答案】(1)证明:∵四边形ABCD为菱形,
∴,,
,,
∵,
∴,
∴.
(2)解:∵,
∴,
即,
解得:.
19.【答案】(1)证明:∵四边形 是矩形
∴E为BD中点
∵
∴
∴
又∵ 为等腰直角三角形
∴ ,
∴
∴
∵
∴
在 与 中
∴ ;
(2)解:设
∵ 为等腰直角三角形
∴ , ,
∵
∴
∴
又∵
∴
∴
∵ ,
∴
∵E是DB中点
∴
∴
∴
∴ .
20.【答案】(1)证明:①证明过程:
四边形ABCD为矩形,
平分
为等腰直角三角形
②证明:连接BG,CG,
G为AF的中点,四边形ABCD为矩形,
平分,
(2)解:作,如图所示
由(1)同理可证:
四边形ABCD为平行四边形
G为AF的中点,由平行线分线段成比例可得
,
21.【答案】(1)证明:,
,,
∽,
,
,,
,
,
(2)解:①∵将沿所在直线折叠,点恰好落在边上的点处,
,,
由(1)可知,,
又,,
,
,
,
,
,
,
;
;
②∵将沿所在直线折叠,点恰好落在边上的点处,
,,,
,
由(1)可知,,
,
,
又,
,
,
.
22.【答案】(1)证明:∵△ABC和△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)解:∵△ABC和△ADE都是等腰直角三角形,
,∠DAE=∠BAC=45°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠BAD=∠CAE,
∴△BAD∽△CAE,
;
(3)解:①,∠ABC=∠ADE=90°,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,,
∴∠CAE=∠BAD,
∴△CAE∽△BAD,
;
②由①得:△CAE∽△BAD,
∴∠ACE=∠ABD,
∵∠AGC=∠BGF,
∴∠BFC=∠BAC,
∴sin∠BFC.
23.【答案】(1)证明:∵AB∥CE,
∴∠BAD=∠DEC,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠CAD=∠DEC,
∴AC=EC,
∵∠BDA=∠CDE,
∴,
∴,
即,
∴;
(2)解:①由折叠可知,AD平分∠BAC,CD=DE,
由(1)得,,
∵AC=1,AB=2,
∴,
∴,
解得:CD=,
∴DE= CD=;
②由折叠可知∠AED=∠C=,
∴,
由①可知,
∴,
∴,
即:.
24.【答案】(1)证明:如图,在BA上截取BH=BE,连接EH.
∵k=2,
∴AB=BC.
∵∠B=90°,BH=BE,
∴∠1=∠2=45°,
∴∠AHE=180°-∠1=135°,
∵CF平分∠DCG,∠DCG=90°,
∴∠3=∠DCG=45°,
∴∠ECF=∠3+∠4=135°,
∵AE⊥EF,
∴∠6+∠AEB=90°,
∵∠5+∠AEB=90°,
∴∠5=∠6,
∵AB=BC,BH=BE,
∴AH=EC,
∴△AHE≌△ECF(ASA),
∴AE=EF;
(2)解:在BA上截取BH=BE,连接EH.
∵∠B=90°,BH=BE,
∴∠BHE=∠BEH=45°,
∴∠AHE=135°,
∵CF平分∠DCG,∠DCG=90°,
∴∠DCF=∠DCG=45°.
∴∠ECF=135°,
∵AE⊥EF,
∴∠FEC+∠AEB=90°,
∵∠BAE+∠AEB=90°,
∴∠BAE=∠FEC,
∴△AHE∽△ECF,
∴,
∵,E是BC边的中点,
∴EC=HB=BC,
∴AH=AB-BC=BC,
∴;
(3)解:以A为旋转中心,△ADP绕A点旋转90°到△AP'H,
∵k=3,
∴,
设AB=3a,则BC=2a,
∵∠PAE=45°,
∴∠P'AP=90°,
连接P'E,HE,延长P'H交CD于点G,连接EG,
∵AH=AD=2a,
∴BH=a,
∵E是BC的中点,
∴BE=a,
∴HE=a,∠BHE=45°,
∴∠P'HE=135°,
∵CG=EC=a,
∴∠GEC=45°,
∴∠PGE=135°,
∵AP'=AP,∠PAE=∠P'AE,AE=AE,
∴△AEP'≌△AEP(SAS),
∴PE=P'E,
∴△PEG≌△P'EH(AAS),
∴∠PEG=∠P'EH,
∵∠HEG=∠EGH=45°,
∴∠HEG=90°,
∴∠PEP'=90°,
∴∠AEP=∠AEP'=45°,
∴∠APE=∠AP'E=90°,
∴四边形APEP'是正方形,
∴AP=PE,
∵∠DAP+∠APD=90°,∠APD+∠EPC=90°,
∴∠DAP=∠EPC,
∵AP=PE,
∴△APD≌△PEC(AAS),
∴AD=PC=2a,PD=ED=a,
∴PE=a,
由(2)得△AHE∽△ECF,
∴,
∵
∴,
∵∠HEG=∠AEF=90°,
∴∠HEA=∠GEF,
∵∠PEG=∠P'EH,
∴∠PEF=∠P'EH=45°,
过点P作PK⊥AE交于K,
∵EF⊥AE,
∴PKEF,
∵,
∴PK=EF,
∴四边形PKEF是矩形,
∴PF=KE,
∵,
∴,
∴
∴.
中考数学精选真题实战测试40 菱形 B: 这是一份中考数学精选真题实战测试40 菱形 B,共18页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
中考数学精选真题实战测试28 图形的基础知识 B: 这是一份中考数学精选真题实战测试28 图形的基础知识 B,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学精选真题实战测试47 图形的相似 A: 这是一份2023年中考数学精选真题实战测试47 图形的相似 A,共19页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

