初中数学冀教版七年级下册第九章 三角形综合与测试精练
展开这是一份初中数学冀教版七年级下册第九章 三角形综合与测试精练,共21页。试卷主要包含了如图,点D,下列图形中,不具有稳定性的是等内容,欢迎下载使用。
冀教版七年级数学下册第九章 三角形难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、人字梯中间一般会设计一“拉杆”,这样做的道理是( )
A.两点之间线段最短 B.三角形的稳定性
C.两点确定一条直线 D.垂线段最短
2、如图,△AOB绕点O逆时针旋转65°得到△COD,若∠COD=30°,则∠BOC的度数是( )
A.30° B.35° C.45° D.60°
3、下列图形中,不具有稳定性的是( )
A.等腰三角形 B.平行四边形 C.锐角三角形 D.等边三角形
4、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )
A.42° B.48° C.52° D.58°
5、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是( )
A. B. C. D.
6、下列长度的三条线段能组成三角形的是( )
A.2,3,6 B.2,4,7 C.3,3,5 D.3,3,7
7、如图,将的BC边对折,使点B与点C重合,DE为折痕,若,,则( ).
A.45° B.60° C.35° D.40°
8、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )
A.两点确定一条直线
B.两点之间,线段最短
C.三角形具有稳定性
D.三角形的任意两边之和大于第三边
9、下列图形中,不具有稳定性的是( )
A. B.
C. D.
10、如图,AD,BE,CF是△ABC的三条中线,则下列结论正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在直线l1∥l2,把三角板的直角顶点放在直线l2上,三角板中60°的角在直线l1与l2之间,如果∠1=35°,那么∠2=___度.
2、如图,一把直尺的一边缘经过直角三角形的直角顶点,交斜边于点;直尺的另一边缘分别交、于点、,若,,则___________度.
3、如图,为△ABC的中线,为△的中线,为△的中线,……按此规律,为△的中线.若△ABC的面积为8,则△的面积为_______________.
4、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.
5、如图:中,,,于D,CE平分,于F,则______°.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,点B、C在线段AD的异侧,点E、F分别是线段AB、CD上的点,∠AEG=∠AGE,∠C=∠DGC.
(1)求证:AB//CD;
(2)若∠AGE+∠AHF=180°,求证:∠B=∠C;
(3)在(2)的条件下,若∠BFC=4∠C,求∠D的度数.
2、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.
3、已知:直线AB∥CD,一块三角板EFH,其中∠EFH=90°,∠EHF=60°.
(1)如图1,三角板EFH的顶点H落在直线CD上,并使EH与直线AB相交于点G,若∠2=2∠1,求∠1的度数;
(2)如图2,当三角板EFH的顶点F落在直线AB上,且顶点H仍在直线CD上时,EF与直线CD相交于点M,试确定∠E、∠AFE、∠MHE的数量关系;
(3)如图3,当三角板EFH的顶点F落在直线AB上,顶点H在AB、CD之间,而顶点E恰好落在直线CD上时得△EFH,在线段EH上取点P,连接FP并延长交直线CD于点T,在线段EF上取点K,连接PK并延长交∠CEH的角平分线于点Q,若∠Q﹣∠HFT=15°,且∠EFT=∠ETF,求证:PQ∥FH.
4、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB的度数.
5、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.
(1)求∠F的度数;
(2)若∠ABE=75°,求证:BE∥CF.
-参考答案-
一、单选题
1、B
【解析】
【分析】
首先要考虑梯子中间设置“拉杆”的原因,是为了让梯子更加稳固,而更加稳固的原因是“拉杆”与梯子两边形成了三角形.
【详解】
人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加梯子的稳定性.
故选:B.
【点睛】
本题考查三角形的稳定性,善于从生活中发现数学原理是解决本题的关键.
2、B
【解析】
【分析】
由旋转的性质可得∠AOC=65°,由∠AOB=30°,即可求∠BOC的度数.
【详解】
解:∵△AOB绕点O逆时针旋转65°得到△COD,
∴∠AOC=65°,
∵∠AOB=30°,
∴∠BOC=∠AOC−∠AOB=35°.
故选:B.
【点睛】
本题考查了旋转的性质,三角形内角和定理,熟练运用旋转的性质是本题的关键.
3、B
【解析】
【分析】
根据三角形具有稳定性,四边形不具有稳定性即可作出选择.
【详解】
解:平行四边形属于四边形,不具有稳定性,而三角形具有稳定性,故A符合题意;
故选:B.
【点睛】
本题考查了多边形和三角形的性质,解题的关键是记住三角形具有稳定性,四边形不具有稳定性.
4、B
【解析】
【分析】
根据两直线平行,同位角相等可得,再由垂直的性质及三角形内角和定理即可得.
【详解】
解:∵,
∴,
∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.
5、C
【解析】
【分析】
根据三角形的三边关系可得,再解不等式可得答案.
【详解】
解:设三角形的第三边为,由题意可得:
,
即,
故选:C.
【点睛】
本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.
6、C
【解析】
【分析】
根据三角形的三边关系,逐项判断即可求解.
【详解】
解:A、因为 ,所以不能组成三角形,故本选项不符合题意;
B、因为 ,所以不能组成三角形,故本选项不符合题意;
C、因为 ,所以能组成三角形,故本选项符合题意;
D、因为 ,所以不能组成三角形,故本选项不符合题意;
故选:C
【点睛】
本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.
7、A
【解析】
【分析】
由折叠得到∠B=∠BCD,根据三角形的内角和得∠A+∠B+∠ACB=180°,代入度数计算即可.
【详解】
解:由折叠得∠B=∠BCD,
∵∠A+∠B+∠ACB=180°,,,
∴65°+2∠B+25°=180°,
∴∠B=45°,
故选:A.
【点睛】
此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.
8、C
【解析】
【分析】
根据三角形具有稳定性进行求解即可.
【详解】
解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,
故选C.
【点睛】
本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.
9、B
【解析】
【分析】
由三角形的稳定性的性质判定即可.
【详解】
A选项为三角形,故具有稳定性,不符合题意,故错误;
B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;
C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;
D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.
故选B.
【点睛】
本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.
10、B
【解析】
【分析】
根据三角形的中线的定义判断即可.
【详解】
解:∵AD、BE、CF是△ABC的三条中线,
∴AE=EC=AC,AB=2BF=2AF,BC=2BD=2DC,
故A、C、D都不一定正确;B正确.
故选:B.
【点睛】
本题考查了三角形的中线的定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
二、填空题
1、65
【解析】
【分析】
根据三角形外角性质即可求得∠3的度数,再依据平行线的性质,可求得∠3=∠2.
【详解】
解:∵∠3是△ABC的外角,∠1=∠ABC=35°,
∴∠3=∠C+∠ABC=30°+35°=65°,
∵直线l1∥l2,
∴∠2=∠3=65°,
故答案为:65.
【点睛】
本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.
2、20
【解析】
【分析】
利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB即可.
【详解】
解:∵EF∥CD,
∴,
∵∠1是△DCB的外角,
∴∠1-∠B=50°-30°=20º,
故答案为:20.
【点睛】
本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.
3、
【解析】
【分析】
根据三角形的中线性质,可得△的面积=,△的面积=,……,进而即可得到答案.
【详解】
由题意得:△的面积=,△的面积=,……,△的面积==.
故答案是:.
【点睛】
本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.
4、三角形具有稳定性,四边形具有不稳定性
【解析】
【分析】
根据三角形的稳定性和四边形的不稳定性解答.
【详解】
由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.
故答案是:三角形具有稳定性,四边形具有不稳定性.
【点睛】
本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.
5、80
三、解答题
1、(1)见解析;(2)见解析;(3)108°
【解析】
【分析】
(1)根据对顶角相等结合已知条件得出∠AEG=∠C,根据内错角相等两直线平行即可证得结论;
(2)由∠AGE+∠AHF=180°等量代换得∠DGC+∠AHF=180°可判断EC//BF,两直线平行同位角相等得出∠B=∠AEG,结合(1)得出结论;
(3)由(2)证得EC//BF,得∠BFC+∠C=180°,求得∠C的度数,由三角形内角和定理求得∠D的度数.
【详解】
证明:(1)∵∠AEG=∠AGE,∠C=∠DGC,∠AGE=∠DGC
∴∠AEG=∠C
∴AB//CD
(2)∵∠AGE=∠DGC,∠AGE+∠AHF=180°
∴∠DGC+∠AHF=180°
∴EC//BF
∴∠B=∠AEG
由(1)得∠AEG=∠C
∴∠B=∠C
(3)由(2)得EC//BF
∴∠BFC+∠C=180°
∵∠BFC=4∠C
∴∠C=36°
∴∠DGC=36°
∵∠C+∠DGC+∠D=180°
∴∠D=108°
【点睛】
此题考查了平行线的判定与性质,三角形内角和定理,熟记“内错角相等,两直线平行”、“同旁内角互补,两直线平行”及“两直线平行,同旁内角互补”是解题的关键.
2、见解析
【解析】
【分析】
连接,,再根据三角形的三边关系即可得出结论.
【详解】
连接,,
,,
.
当且仅当CD过圆心O时,取“=”号,
.
【点睛】
本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.
3、 (1)∠1=40°
(2)∠E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+∠MHE
(3)见解析
【解析】
【分析】
(1)根据平行线的性质得∠1=∠CHG,再由平角的定义得∠CHG+∠EHF+∠2=180°,进一步求出∠1的度数即可;
(2)由平行线的性质得∠AFE=∠CME,由三角形外角性质得∠CME=∠E+∠MHE,从而求得结论;
(3)设∠AFE=x,则∠BFH=90°﹣x,∠EFB=180°﹣x.由平行线的性质和三角形外角性质得∠HFT=∠BFT﹣∠BFH=x,故可得∠Q=15°+x.再证明∠CEH=210°﹣x.∠QEH=105°﹣x,由∠Q+∠QEH+∠QPE=180°得15°+x+105°﹣x+∠QPE=180°求得∠QPE=60°,从而∠QPE=∠H故可得结论.
(1)
∵AB∥CD,
∴∠1=∠CHG.
∵∠2=2∠1,
∴∠2=2∠CHG.
∵∠CHG+∠EHF+∠2=180°,
∴3∠CHG+60°=180°.
∴∠CHG=40°.
∴∠1=40°.
(2)
∠E、∠AFE、∠MHE的数量关系为:∠AFE=∠E+∠MHE,理由:
∵AB∥CD,
∴∠AFE=∠CME.
∵∠CME=∠E+∠MHE,
∴∠AFE=∠E+∠MHE.
(3)
证明:设∠AFE=x,则∠BFH=90°﹣x,∠EFB=180°﹣x.
∵AB∥CD,
∴∠BFT=∠ETF.
∵∠EFT=∠ETF,
∴∠EFT=∠BFT=∠EFB=90°﹣x.
∴∠HFT=∠BFT﹣∠BFH=x.
∵∠Q﹣∠HFT=15°,
∴∠Q=15°+x.
∵AB∥CD,
∴∠AFE+∠CEF=180°.
∴∠CEF=180°﹣x.
∴∠CEH=∠CEF+∠FEH=180°﹣x+30°=210°﹣x.
∵EQ平分∠CEH,
∴∠QEH=∠CEH=105°﹣x.
∵∠Q+∠QEH+∠QPE=180°,
∴15°+x+105°﹣x+∠QPE=180°.
∴∠QPE=60°.
∵∠H=60°,
∴∠QPE=∠H.
∴PQ∥FH.
【点睛】
本题属于几何变换综合题,考查了平行线的性质与判定,三角形内角和定理等知识,正确的识别图形是解题的关键.
4、75°
【解析】
【分析】
根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.
【详解】
解:∵AD是∠BAC的平分线,∠BAC=80°,
∴∠DAC=40°,
∵CE是△ADC边AD上的高,
∴∠ACE=90°﹣40°=50°,
∵∠ECD=25°
∴∠ACB=50°+25°=75°.
【点睛】
本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.
5、(1);(2)证明见详解.
.
【解析】
【分析】
(1)根据三角形内角和及等腰三角形的性质可得,,由各角之间的关系及三角形内角和定理可得,,最后由平行线的性质即可得出;
(2)由题意及各角之间的关系可得,得出,利用平行线的判定定理即可证明.
【详解】
解:(1)∵,,,
∴,,
∵,
∴,,
∴,
∴,
∵,
∴,,
∴;
(2)∵,,
∴,
由(1)可得,
∴,
∴(内错角相等,两直线平行).
【点睛】
题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.
相关试卷
这是一份初中数学冀教版七年级下册第九章 三角形综合与测试达标测试,共18页。
这是一份冀教版七年级下册第九章 三角形综合与测试达标测试,共21页。试卷主要包含了下列图形中,不具有稳定性的是等内容,欢迎下载使用。
这是一份2021学年第九章 三角形综合与测试课后作业题,共21页。

