初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试同步练习题
展开七年级数学第二学期第十五章平面直角坐标系定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若点P(m,1)在第二象限内,则点Q(1﹣m,﹣1)在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
2、在平面直角坐标系xOy中,若在第三象限,则关于x轴对称的图形所在的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、如图,矩形ABCD的边BC在x轴上,点A在第二象限,点D在第一象限,AB= ,OD=4,将矩形ABCD绕点O顺时针旋转,使点D落在x轴的正半轴上,则点C对应点的坐标是( )
A.(,) B.(,) C.(,) D.(,)
4、在平面直角坐标系中,点(1,3)关于原点对称的点的坐标是 ( )
A.( - 1, - 3) B.( - 1,3) C.(1, - 3) D.(3,1)
5、点向上平移2个单位后与点关于y轴对称,则( ).
A.1 B. C. D.
6、点关于轴对称的点的坐标是( )
A. B. C. D.
7、平面直角坐标系中,下列在第二象限的点是( )
A. B. C. D.
8、在平面直角坐标系中,点在轴上,则点的坐标为( ).
A. B. C. D.
9、点M(3,2)关于y轴的对称点的坐标为( )
A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)
10、平面直角坐标系中,点P(,)和点Q(,)关于轴对称,则的值是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.
2、如图,直角坐标平面xoy内,动点P按图中箭头所示方向依次运动,第1次从点(-1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,-2),…按这样的运动规律,动点P第2022次运动到点的坐标是_____.
3、已知点与点关于轴对称,则________.
4、点到轴的距离为______,到轴的距离为______.
5、已知点与关于原点对称,则xy的值是______.
三、解答题(10小题,每小题5分,共计50分)
1、(1)如图①所示,图中的两个三角形关于某点对称,请找出它们的对称中心O.
(2)如图②所示,已知△ABC的三个顶点的坐标分别为A(4,﹣1),B(1,1),C(3,﹣2).将△ABC绕原点O旋转180°得到△A1B1C1,请画出△A1B1C1,并写出点A1的坐标.
2、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
(1)△ABC的面积为 ;
(2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
(3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)
3、如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.
(1)请在图中标出点A和点C;
(2)△ABC的面积是 ;
(3)在y轴上有一点D,且S△ACD=S△ABC,则点D的坐标为 .
4、已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
(2)直接写出△ABC的面积为 ;
(3)在x轴上画点P,使PA+PC最小.
5、如图
(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?
(2)如何确定敌方战舰B的位置?
6、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0, -1),
(1)写出A、B两点的坐标;
(2)画出△ABC关于y轴对称的△A1B1C1 ;
(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
7、如图,在平面直角坐标系中、ABC的顶点坐标分别为A(4,6),B(5,2),C(2,1)
(1)在图中画出ABC关于点O的中心对称图形,并写出点,点,点的坐标;
(2)求的面积.
8、如图,在平面直角坐标系中,△ABC的两个顶点A,B在x轴上,顶点C在y轴上,且∠ACB=90°.
(1)图中与∠ABC相等的角是 ;
(2)若AC=3,BC=4,AB=5,求点C的坐标.
9、在平面直角坐标系中描出以下各点:A(3,2)、B(-1,2)、C(-2,-1)、D(4,-1).顺次连接A、B、C、D得到四边形ABCD;
10、如图,已知△ABC三个顶点的坐标分A(﹣3,2),B(﹣1,3),C(﹣2,1).将△ABC先向右平移4个单位,再向下平移3个单位后,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′.
(1)根据要求在网格中画出相应图形;
(2)写出△A′B′C′三个顶点的坐标.
-参考答案-
一、单选题
1、A
【分析】
直接利用第二象限内点的坐标特点得出m的取值范围进而得出答案.
【详解】
∵点P(m,1)在第二象限内,
∴m<0,
∴1﹣m>0,
则点Q(1﹣m,﹣1)在第四象限.
故选:A.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
2、B
【分析】
设内任一点A(a,b)在第三象限内,可得a<0,b<0,关于x轴对称后的点B(-a,b),则﹣a>0,b<0,然后判定象限即可.
【详解】
解:∵设内任一点A(a,b)在第三象限内,
∴a<0,b<0,
∵点A关于x轴对称后的点B(a,-b),
∴﹣b>0,
∴点B(a,-b)所在的象限是第二象限,即在第二象限.
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.
3、B
【分析】
由矩形可知AB=CD=,再由勾股定理可知OC=2,则C点坐标为(2,0),D点坐标为(2,),旋转后D’点坐标为(4,0),则C’点坐标为(1,).
【详解】
∵四边形ABCD为矩形
∴AB=CD=,∠DOC=60°
在中有
则C点坐标为(2,0),D点坐标为(2,)
又∵旋转后D点落在x轴的正半轴上
∴可看作矩形ABCD中绕点O顺时针旋转了60°得到
如图所示,过C’作y轴平行线交x轴于点M
其中∠DOC=∠D’OC’=60°,∠OMC’=90°,OC=OC’=2
∴OM==1,MC’==
∴C’坐标为(1,).
故选:B.
【点睛】
本题考查了旋转的性质,得出矩形ABCD绕点O顺时针旋转了60°是解题的关键.
4、A
【分析】
由两个点关于原点对称时,它们的坐标符号相反特点进行求解即可.
【详解】
解:∵两个点关于原点对称时,它们的坐标符号相反,
∴点关于原点对称的点的坐标是.
故选:A.
【点睛】
题目考查了关于原点对称的点的坐标,解题关键是掌握好关于原点对称点的坐标规律.
5、D
【分析】
利用平移及关于y轴对称点的性质即可求解.
【详解】
解:把向上平移2个单位后得到点 ,
∵点与点关于y轴对称,
∴ , ,
∴ ,
∴,
故选:D.
【点睛】
本题考查坐标与图形变化平移、轴对称的性质及负整数指数幂,解题关键是掌握平移、轴对称的性质及负整数指数幂.
6、B
【分析】
根据两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,即可得答案.
【详解】
解:∵点A的坐标为(-2,-3),
∴点A(-2,-3)关于x轴对称的点的坐标是(-2,3).
故选:B.
【点睛】
本题是对坐标系中对称点的考查,熟记两个关于x轴成轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,是解题关键.
7、C
【分析】
由题意直接根据第二象限点的坐标特点,横坐标为负,纵坐标为正,进行分析即可得出答案.
【详解】
解:A、点(1,0)在x轴,故本选项不合题意;
B、点(3,-5)在第四象限,故本选项不合题意;
C、点(-1,8)在第二象限,故本选项符合题意;
D、点(-2,-1)在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
8、A
【分析】
根据轴上的点的坐标特点纵坐标为0,即求得的值,进而求得点的坐标
【详解】
解:∵点在轴上,
∴
解得
故选A
【点睛】
本题考查了轴上的点的坐标特征,理解“轴上的点的坐标特点是纵坐标为0”是解题的关键.平面直角坐标系中坐标轴上点的坐标特点:①x轴正半轴上的点:横坐标>0,纵坐标=0;②x轴负半轴上的点:横坐标<0,纵坐标=0;③y轴正半轴上的点:横坐标=0,纵坐标>0;
④y轴负半轴上的点:横坐标=0,纵坐标<0;⑤坐标原点:横坐标=0,纵坐标=0.
9、A
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点(3,2)关于y轴的对称点的坐标是(-3,2).
故选:A.
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
10、A
【分析】
根据题意直接利用关于x轴对称点的性质得出a,b的值,进而代入计即可得出答案.
【详解】
解:∵点P(,)和点Q(,)关于轴对称,
∴,
∴.
故选:A.
【点睛】
本题考查关于x轴的对称点的坐标特点,注意掌握关于x轴的对称点的坐标特点为横坐标不变,纵坐标互为相反数.
二、填空题
1、5
【分析】
关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.
【详解】
解: 点与,关于y轴对称,
故答案为:5
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
2、(2021,0)
【分析】
由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2022除以4,再由商和余数的情况确定运动后点的坐标.
【详解】
由图中点的坐标可得:每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,
∵2022÷4=505余2,
∴第2022次运动为第505循环组的第2次运动,
横坐标为,纵坐标为0,
∴点P运动第2022次的坐标为(2021,0).
故答案为:(2021,0).
【点睛】
考查了点的坐标规律,解题关键是观察点的坐标变化,并寻找规律.
3、12
【分析】
根据关于轴对称的点,纵坐标相同,横坐标互为相反数分别求出、的值,然后代入代数式进行计算即可求解.
【详解】
解:点与点关于轴对称,
,,
.
故答案为:.
【点睛】
本题考查了关于轴对称的点的坐标,解题的关键是掌握好对称点的坐标规律:关于轴对称的点,纵坐标相同,横坐标互为相反数.
4、5 2
【分析】
根据横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离即可求解.
【详解】
解:点到轴的距离为,到轴的距离为2.
故答案为:5;2
【点睛】
本题考查了坐标与图形的性质,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是点到x轴的距离,掌握坐标的意义是解题的关键.
5、
【分析】
直接利用关于原点对称点的性质得出x,y的值进而得出答案.
【详解】
解:∵点与关于原点对称,
∴
解得:,
则xy的值是:-3.
故答案为:-3.
【点睛】
此题主要考查了关于原点对称点的性质,正确得出的值是解题关键.
三、解答题
1、(1)见解析;(2)画图见解析,点A1的坐标为(-4,1).
【分析】
(1)根据对称中心的性质可得对应点连线的交点即为对称中心;
(2)根据题意作出A,B,C绕原点O旋转180°得到的点A1,B1,C1,然后顺次连接A1,B1,C1即可,根据点A1的在平面直角坐标系中的位置即可求得坐标.
【详解】
(1)如图所示,点O即为要求作的对称中心.
(2)如图所示,△A1B1C1即为要求作的三角形,
由点A1的在平面直角坐标系中的位置可得,
点A1的坐标为(-4,1).
【点睛】
此题考查了平面直角坐标系中的几何旋转作图,中心对称的性质,解题的关键是熟练掌握中心对称的性质.
2、(1)5;(2)见解析;(3)见解析
【分析】
(1)利用“补全矩形法”求解△ABC的面积;
(2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
(3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
【详解】
解:(1)如图所示:
S△ABC=3×4-×2×2-×2×3-×4×1=5.
(2)如图所示:
(3)如图所示:
【点睛】
本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
3、(1)作图见解析;(2)16;(3)(0,4)或(0,-4).
【分析】
(1)如图所示,由点C与点A关于y轴对称可知C坐标为(4,0),描点画图即可.
(2)得出△ABC的底和高再由三角形面积公式计算即可.
(3)S△ACD=S△ABC为同底不同高,故由(2)问知,再由点D在y轴上知D点坐标为(0,4)或(0,-4).
【详解】
解:(1)如图所示,点A为(-4,0),
∵点C与点A关于y轴对称
∴点C坐标为(4,0)
(2)由×底×高有
(3)∵S△ACD=S△ABC,AC=AC
∴
即D点的纵坐标为4或-4
又∵D点在y轴上
故D点坐标为(0,4)或(0,-4).
【点睛】
本题考查了坐标轴中的点坐标问题、轴对称问题、求三角形面积,解题的关键是要运用数形结合的思想.
4、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
【分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
【详解】
解:(1)如图所示:△A1B1C1即为所求,
A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:5;
(3)如图所示:点P即为所求.
【点睛】
本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
5、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.
【分析】
(1)根据图中的位置与方向即可确定.
(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.
【详解】
(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.
(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.
【点睛】
本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.
6、(1)A(-1,2) B(-3,1); (2)见解析;(3)见解析
【分析】
(1)根据 A,B 的位置写出坐标即可;
(2)分别求出 A,B,C 的对应点 A1,B1,C1的坐标,然后描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1即可;
(3)分别求出 A,B,C 的对应点A2(1,-4)、B2(3,-3)、C2(0,-1),然后描点,顺次连结A2B2, B2C2,C2A2即可.
【详解】
(1)由题意 A(-1,2),B(-3,1).
(2)△ABC关于y轴对称的△A1B1C1,对应点的坐标纵坐标不变,横坐标互为相反数,
∵A(-1,2),B(-3,1).C(0,-1),
∴A1(1,2),B1(3,1),C1(0,-1),
在平面直角坐标系中描点A1(1,2),B1(3,1),C1(0,-1),顺次连结A1B1, B1C1,C1A1,
如图△A1B1C1即为所求.
(3)△ABC绕点C旋转180°后得到的△A2B2C2,关于点C成中心对称,对应点的横坐标为互为相反数,
∵A(-1,2),B(-3,1).C(0,-1),
∴A2、B2、C2的横坐标分别为1,3,0,
纵坐标分别为-1-(2+1)=-4,-1-(1+1)=-3,-1,
∴A2(1,-4)、B2(3,-3)、C2(0,-1),
在平面直角坐标系中描点A2(1,-4)、B2(3,-3)、C2(0,-1),顺次连结A2B2, B2C2,C2A2,
如图△A2B2C2即为所求.
【点睛】
本题主要考查图形与坐标,作图-轴对称变换,旋转变换等知识,解答本题的关键是熟练掌握基本知识,属于中考常考题型.
7、(1)点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1),画图见解析;(2)
【分析】
(1)先根据关于原点对称的点的坐标特征求出点,点,点的坐标,然后描出点,点,点,最后顺次连接点,点,点即可;
(2)根据的面积等于其所在的长方形面积减去周围三个三个小三角形面积求解即可.
【详解】
解:(1)∵是△ABC关于原点对称的中心对称图形, A(4,6),B(5,2),C(2,1),
∴点的坐标为(-4,-6),点的坐标为(-5,-2),点的坐标为(-2,-1);
∴如图所示,即为所求;
(2)由图可知 .
【点睛】
本题主要考查了画中心对称图形,关于原点对称的点的坐标特征,三角形面积,解题的关键在于能够熟练掌握关于原点对称的点的坐标特征.
8、(1)∠ACO;(2)点C的坐标为(0,).
【分析】
(1)由同角的余角相等,可得到∠ABC=∠ACO;
(2)利用面积法可求得CO的长,进而得到点C的坐标.
【详解】
解:(1)∵OC⊥AB,∠ACB=90°.
∴∠ABC+∠BCO=∠ACO+∠BCO=90°,
∴∠ABC=∠ACO;
故答案为:∠ACO;
(2)∵AC=3,BC=4,AB=5,
∴三角形ABC是直角三角形,∠ACB=90°
ABCO=ACBC,即CO==,
∴点C的坐标为(0,).
【点睛】
本题考查了同角的余角相等,面积法求线段的长,坐标与图形,解题的关键是灵活运用所学知识解决问题.
9、见解析
【分析】
根据各点的坐标描出各点,然后顺次连接即可
【详解】
解:如图所示:
【点睛】
本题考查了坐标与图形,熟练掌握相关知识是解题的关键
10、(1)见解析;(2),,
【分析】
(1)利用平移变换的性质分别作出,,的对应点,,即可.
(2)根据平面直角坐标系写出,,的坐标.
【详解】
解:(1)如图,△即为所求,
(2)根据平面直角坐标系可得:,,.
【点睛】
本题考查作图平移变换等知识,解题的关键是掌握平移变换的性质,属于中考常考题型.
数学七年级下册第十五章 平面直角坐标系综合与测试课时练习: 这是一份数学七年级下册第十五章 平面直角坐标系综合与测试课时练习,共28页。试卷主要包含了根据下列表述,能确定位置的是,如果点P,直角坐标系中,点A与点B关于等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时练习,共28页。试卷主要包含了在平面直角坐标系中,点P,点在,平面直角坐标系中,点P,下列各点,在第一象限的是,已知点M等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试课时训练,共32页。试卷主要包含了点P关于原点O的对称点的坐标是,直角坐标系中,点A与点B关于等内容,欢迎下载使用。

