


初中数学沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试巩固练习
展开七年级数学第二学期第十五章平面直角坐标系定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是( )
A.(﹣3,﹣2) B.(﹣3,2) C.(﹣2,3) D.(2,3)
2、将点P(2,﹣1)以原点为旋转中心,顺时针旋转90°得到点P',则点P'的坐标是( )
A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(﹣1,﹣2)
3、点向上平移4个单位,再向左平移3个单位到点B,则点B的坐标为( )
A. B. C. D.
4、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b=( )
A.﹣1 B.1 C.﹣5 D.5
5、点M(3,2)关于y轴的对称点的坐标为( )
A.(﹣3,2) B.(3,﹣2) C.(﹣3,﹣2) D.(1,2)
6、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )
A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)
7、如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0) B.(2021,1) C.(2021,0) D.(2022,﹣1)
8、若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是( )
A.直线x=﹣1 B.x轴 C.y轴 D.直线x=
9、△ABC在平面直角坐标系中的位置如图所示,将其绕点P顺时针旋转得到△A'B'C′,则点P的坐标是( )
A.(4,5) B.(4,4) C.(3,5) D.(3,4)
10、在平面直角坐标系中,点,关于轴对称点的坐标是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点与,关于y轴对称,则的值为____________.
2、已知点到两坐标轴的距离相等,则点E的坐标为______.
3、已知点A(1,3)和B(1,-3),则点A,B关于________对称.
4、若点M(,a)关于y轴的对称点是点N(b,),则=________.
5、线段CD是由线段AB平移得到的,点的对应点为,则点的对应点D的坐标是______.
三、解答题(10小题,每小题5分,共计50分)
1、已知点A(1,﹣1),B(﹣1,4),C(﹣3,1).
(1)请在如图所示的平面直角坐标系中(每个小正方形的边长都为1)画出△ABC;
(2)作△ABC关于x轴对称的△DEF,其中点A,B,C的对应点分别为点D,E,F;
(3)连接CE,CF,请直接写出△CEF的面积.
2、格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.
(1)A点坐标为 ;A点关于y轴对称的对称点A1坐标为 .
(2)请作出△ABC关于y轴对称的△A1B1C1;
(3)请直接写出△A1B1C1的面积.
3、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点,称为点P的一次反射点;将点关于直线l的对称点,称为点P关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为(3,-2),点M关于直线l:x=1的二次反射点为(-1,-2).
已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).
(1)点A的一次反射点为 ,点A关于直线:x=2的二次反射点为 ;
(2)点B是点A关于直线:x=a的二次反射点,则a的值为 ;
(3)设点A,B,C关于直线:x=t的二次反射点分别为,,,若△与△BCD无公共点,求t的取值范围.
4、如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请回答下列问题.
(1)画出关于x轴对称的,并写出点的坐标(___,___)
(2)点P是x轴上一点,当的长最小时,点P坐标为______;
(3)点M是直线BC上一点,则AM的最小值为______.
5、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点A的坐标为(1,-4).
(1)△A1B1C1是△ABC关于y轴的对称图形,则点A的对称点A1的坐标是_______,并在图中画出△A1B1C1.
(2)将△ABC绕原点逆时针旋转90°得到△A2B2C2,则A点的对应点A2的坐标是______,并在图中画出△A2B2C2 .
6、如图,的顶点坐标分别为画出绕点顺时针旋转,得到并直接写出的面积.
7、如图,在所给网格图(每小格边长均为1的正方形)中完成下列各题:
(1)△ABC的面积为 ;
(2)画出格点△ABC(顶点均在格点上)关于x轴对称的△A1B1C1;
(3)在y轴上画出点Q,使QA+QC最小.(保留画的痕迹)
8、如图在平面直角坐标系中,△ABC各顶点的坐标分别为: A(4,0),B(﹣1,4),C(﹣3,1)
(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
(2)求△ABC的面积
9、如图,等腰直角△ABC中,BC=AC,∠ACB=90°,现将该三角形放置在平面直角坐标系中:
(1)点B坐标为(0,2),点C坐标为(6,0),求点A的坐标;
(2)点B坐标为(0,m),点C坐标为(n,0),连接OA,若P为坐标平面内异于点A的点,且以O、P、C为顶点的三角形与△OAC全等,请直接写出满足条件的点P的坐标(用含m,n的式子表示).
10、已知:如图,在平面直角坐标系中.
(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标:A1( ),B1( ),C1( );
(2)直接写出△ABC的面积为 ;
(3)在x轴上画点P,使PA+PC最小.
-参考答案-
一、单选题
1、A
【分析】
根据点F点N关于原点对称,即可求解.
【详解】
解:∵F点与N点关于原点对称,点F的坐标是(3,2),
∴N点坐标为(﹣3,﹣2).
故选:A
【点睛】
本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.
2、D
【分析】
如图,作PE⊥x轴于E,P′F⊥x轴于F.利用全等三角形的性质解决问题即可.
【详解】
解:如图,作PE⊥x轴于E,P′F⊥x轴于F.
∵∠PEO=∠OFP′=∠POP′=90°,
∴∠POE+∠P′OF=90°,∠P′OF+∠P′=90°,
∴∠POE=∠P′,
∵OP=OP′,
∴△POE≌△OP′F(AAS),
∴OF=PE=1,P′F=OE=2,
∴P′(﹣1,-2).
故选:D.
【点睛】
本题考查旋转变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
3、C
【分析】
利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.
【详解】
解:点A的坐标为(3,5),将点A向上平移4个单位,再向左平移3个单位到点B,
点B的横坐标是:33=6,纵坐标为:5+4=1,
即(6,1).
故选:C.
【点睛】
本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.
4、B
【分析】
根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.
【详解】
解:∵点P(﹣2,b)和点Q(a,﹣3),
又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴a=﹣2,b=3.
∴a+b=1,
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,点P(x,y)关于x轴的对称点P′的坐标是(x,-y),正确记忆横纵坐标的关系是解题关键.
5、A
【分析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.
【详解】
解:点(3,2)关于y轴的对称点的坐标是(-3,2).
故选:A.
【点睛】
本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.
6、A
【分析】
根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断
【详解】
解:由题意可知,点P在第一象限,且横坐标大于纵坐标,
A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;
B.(﹣4,2)在第二象限,故本选项符合题意;
C.(﹣4,﹣2)在第三象限,故本选项符合题意;
D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;
故选:A.
【点睛】
本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
7、C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
8、B
【分析】
根据轴对称的性质判断即可.
【详解】
解:若在第一象限的ABC关于某条直线对称后的DEF在第四象限,则这条直线可以是x轴
故选:B.
【点睛】
本题考察了轴对称的性质,利用轴对称的性质找出对称轴是本题的关键.
9、B
【分析】
对应点的连线段的垂直平分线的交点,即为所求.
【详解】
解:如图,点即为所求,,
故选:B.
【点睛】
本题考查坐标与图形变化旋转,解题的关键是理解对应点的连线段的垂直平分线的交点即为旋转中心.
10、A
【分析】
平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.
【详解】
解:点A(3,-4)关于x轴的对称点的坐标是(3,4),
故选:A.
【点睛】
本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.
二、填空题
1、5
【分析】
关于轴对称的两个点的横坐标互为相反数,纵坐标不变,根据原理直接求解的值,再代入进行计算即可.
【详解】
解: 点与,关于y轴对称,
故答案为:5
【点睛】
本题考查的是关于轴对称的两个点的坐标特点,掌握“关于轴对称的两个点的横坐标互为相反数,纵坐标不变”是解本题的关键.
2、(-7,-7)或()
【分析】
根据点到两坐标轴的距离相等,得到,解方程求出a的值代入计算即可得到答案.
【详解】
解:由题意得,
解得或,
当时,a-3=-7,2a+1=-7,点E的坐标为(-7,-7),
当时,,∴点E的坐标为(),
故答案为:(-7,-7)或().
【点睛】
此题考查直角坐标系中点的坐标特点,正确掌握点到两坐标轴的距离相等,得到是解题的关键.
3、x轴
【分析】
根据点坐标关于轴对称的变换规律即可得.
【详解】
解:点坐标关于轴对称的变换规律:横坐标相同,纵坐标互为相反数.
点A(1,3)和B(1,-3),的横坐标相同,纵坐标互为相反数,
点关于轴对称,
故答案为:轴.
【点睛】
本题考查了点坐标与轴对称变化,熟练掌握点坐标关于轴对称的变换规律是解题关键.
4、1
【分析】
直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案.
【详解】
解:∵点M(,a)关于y轴的对称点是点N(b,),
∴b=-,a=,
则=1.
故答案为:1.
【点睛】
此题主要考查了关于y轴对称点的性质,得出a,b的值是解题关键.
5、
【分析】
点的对应点为,确定平移方式,先向右平移5个单位长度,再向上平移3个单位长度,从而结合可得其对应点的坐标.
【详解】
解: 线段CD是由线段AB平移得到的,点的对应点为,
而
,
故答案为:
【点睛】
本题考查的是坐标系内点的平移,掌握由坐标的变化确定平移方式,再由平移方式得到对应点的坐标是解本题的关键.
三、解答题
1、(1)作图见详解;(2)作图见详解;(3)的面积为2.
【分析】
(1)直接在坐标系中描点,然后依次连线即可;
(2)先确定A、B、C三点关于x轴对称的点的坐标,然后依次连接即可;
(3)根据三角形在坐标系中的位置,确定三角形的底和高,直接求面积即可.
【详解】
解:(1)如图所示,即为所求;
(2)A、B、C三点关于x轴对称的点的坐标分别为:,,,
然后描点、连线,
∴即为所求;
(3)由图可得:SΔCEF=12×2×2=2,
∴的面积为2.
【点睛】
题目主要考查在坐标系中作轴对称图形及点的坐标特点,熟练掌握轴对称图形的性质是解题关键.
2、(1)(-2,3);(2,3);(2)见解析;(3)
【分析】
(1)根据平面直角坐标系可得A点坐标,再根据关于y轴对称的点的坐标特点可得A1坐标;
(2)首先确定A、B、C三点坐标,再连接即可;
(3)根据割补求解可得答案.
【详解】
解:(1)A点坐标为 (-2,3);
A点关于y轴对称的对称点A1坐标为 (2,3).
故答案为:(-2,3);(2,3);
(2)如图所示△A1B1C1;
(3)△A1B1C1的面积:2×2-×1×2-×1×2-×1×1=.
【点睛】
本题主要考查了作图-轴对称变换,关键是掌握图形都是由点组成的,作轴对称图形,就是寻找特殊点的对称点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
3、(1)(-1,1);(5,1);(2)-2;(3)<-2或>1.
【分析】
(1)根据一次反射点和二次反射点的定义求解即可;
(2)根据二次反射点的意义求解即可;
(3)根据题意得,,,分<0和>0时△与△BCD无公共点,求出t的取值范围即可.
【详解】
解:(1)根据一次反射点的定义可知,A(-1,-1)一次反射点为(-1,1),
点A关于直线:x=2的二次反射点为(5,1)
故答案为: (-1,1);(5,1).
(2)∵A(-1,-1),B(-3,1),且点B是点A关于直线:x=a的二次反射点,
∴
解得,
故答案为: -2.
(3)由题意得,(-1,1),(-3,-1),(3,-3),点D(1,-1)在线段上.
当<0时,只需关于直线=的对称点在点B左侧即可,如图1.
∵当与点B重合时,=-2,
∴当<-2时,△与△BCD无公共点.
当>0时,只需点D关于直线x=的二次反射点在点D右侧即可,如图2,
∵当与点D重合时,=1,
∴当>1时,△与△BCD无公共点.
综上,若△与△BCD无公共点,的取值范围是<-2,或>1.
【点睛】
本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.
4、(1)5,-3;(2)(,0);(3)
【分析】
(1)利用关于x轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;
(2)连接BC1交x轴于点P,利用两点之间线段最短可判断P点满足条件,利用待定系数法求得直线BC1的解析式,即可求解;
(3)利用割补法求得△ABC的面积,利用两点之间的距离公式求得BC的长,再利用面积法即可求解.
【详解】
解:(1)如图,△A1B1C1为所作,点C1的坐标为(5,-3);
故答案为:5,-3;
(2)如图,点P为所作.
设直线BC1的解析式为y=kx+b,
∵点C1的坐标为(5,-3),点B的坐标为(1,2),
∴,解得:,
∴直线BC1的解析式为y=x+,
当y=0时,x=,
∴点P的坐标为(,0);
故答案为:(,0);
(3)根据垂线段最短,当AM垂直BC时,垂线段AM取得最小值,
△ABC的面积为2×4-×2×1-×4×1-×3×1=;
BC=,
∵××AM=,
∴AM=.
故答案为:.
【点睛】
本题考查了作图-轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.注意:关于x轴对称的点,横坐标相同,纵坐标互为相反数.
5、(1)图见解析,A1(-1,-4);(2)图见解析,A2(4,1).
【分析】
(1)根据网格结构,找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标即可;
(2)根据网格结构,找出点A、B、C绕点逆时针旋转90°的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可.
【详解】
解:(1)如图所示,△A1B1C1即为所求作的三角形,点A1(-1,-4);
(2)如图所示,△A2B2C2即为所求作的三角形,点A2(4,1).
故答案为:(4,1).
【点睛】
本题考查了旋转和轴对称作图,掌握画图的方法和图形的特点是关键;注意根据对应点得到对称轴.
6、图见解析,面积为2
【分析】
先求出旋转后A1(5,2),B1(2,3),C1(4,1),然后描点,连线,利用矩形面积减三个三角形面积即可.
【详解】
解:∵的顶点坐标分别为,绕点顺时针旋转,得到,
∴点A1横坐标-1+[5-(-1)]=5,纵坐标-1+[-1-(-4)]=2,A1(5,2),
∴点B1横坐标-1+[2-(-1)]=2,纵坐标-1+[-1-(-5)]=3,B1(2,3),
∴点C1横坐标-1+[4-(-1)]=4,纵坐标-1+[-1-(-3)]=1,C1(4,1),
在平面直角坐标系中描点A1(5,2),B1(2,3),C1(4,1),
顺次连结A1B1, B1C1,C1A1,
则△A1B1C1为所求;
,
=,
=,
=2.
【点睛】
本题考查三角形旋转画图,割补法求三角形面积,掌握求旋转坐标的方法,描点法画图,割补法求面积是解题关键.
7、(1)5;(2)见解析;(3)见解析
【分析】
(1)利用“补全矩形法”求解△ABC的面积;
(2)找到A、B、C三点关于x轴的对称点,顺次连接可得△A1B1C1;
(3)作点A关于y轴的对称点A',连接A'C,则A'C与y轴的交点即是点Q的位置.
【详解】
解:(1)如图所示:
S△ABC=3×4-×2×2-×2×3-×4×1=5.
(2)如图所示:
(3)如图所示:
【点睛】
本题考查了轴对称作图及最短路径的知识,难度一般,解答本题注意“补全矩形法”求解格点三角形面积的应用.
8、(1)见解析;(2)11.5
【分析】
(1)直接利用关于x轴对称点的性质,进而得出答案;
(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示
(2)
【点睛】
此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.
9、(1)点A的坐标;(2)P的坐标为:或或.
【分析】
(1)根据已知条件得到,得到,证明得到,再根据已知点的坐标计算即可;
(2)根据题意:考虑作的对称图形,然后根据全等三角形的性质求解即可得.
【详解】
解:(1)过点A作轴,
∵,
∴,
∵在中:,
∴,
∵轴,
∴,
在与中,
,
∴,
∴,
又∵点B坐标为,点C坐标为,
∴,,
∴,
∴点A的坐标;
(2)①作关于x轴的对称图形得到,
∴,
∵点B坐标为,点C坐标为,
∴,,
∴,
∴点A的坐标;
∴;
②∵点O,C关于直线对称,
∴作关于直线的对称图形得到,
过点作轴,
∴,
在与中,
,
∴,
∴,
结合点所在的位置可得:;
③作关于x轴的对称图形得到,
∴,即,
∴与横坐标相同,纵坐标互为相反数,
可得:;
综上所述:P的坐标为:或或.
【点睛】
本题主要考查了坐标与图形的应用,等腰三角形的判定与性质,全等三角形的判定与性质,根据题意作出相应图形进行分类讨论是解题关键.
10、(1)作图见解析,(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);(2)5;(3)见解析
【分析】
(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;
(2)直接利用△ABC所在长方形面积减去周围三角形面积进而得出答案;
(3)先确定A关于轴的对称点,再连接交轴于则此时满足要求.
【详解】
解:(1)如图所示:△A1B1C1即为所求,
A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);
故答案为:(0,﹣2),(﹣2,﹣4),(﹣4,﹣1);
(2)△ABC的面积为:12﹣×1×4﹣×2×2﹣×2×3=5;
故答案为:5;
(3)如图所示:点P即为所求.
【点睛】
本题考查的是轴对称的作图,坐标与图形,掌握“利用轴对称确定线段和取最小值时点的位置”是解本题的关键.
沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题: 这是一份沪教版 (五四制)七年级下册第十五章 平面直角坐标系综合与测试随堂练习题,共26页。试卷主要包含了平面直角坐标系内一点P,已知点A,点P在第二象限内,P点到x等内容,欢迎下载使用。
2020-2021学年第十五章 平面直角坐标系综合与测试测试题: 这是一份2020-2021学年第十五章 平面直角坐标系综合与测试测试题,共30页。试卷主要包含了一只跳蚤在第一象限及x轴等内容,欢迎下载使用。
数学七年级下册第十五章 平面直角坐标系综合与测试精练: 这是一份数学七年级下册第十五章 平面直角坐标系综合与测试精练,共33页。试卷主要包含了一只跳蚤在第一象限及x轴,若平面直角坐标系中的两点A,在平面直角坐标系中,点在,已知点A象限,在平面直角坐标系xOy中,点A等内容,欢迎下载使用。