


北京课改版七年级下册第五章 二元一次方程组综合与测试精练
展开这是一份北京课改版七年级下册第五章 二元一次方程组综合与测试精练,共19页。试卷主要包含了若方程组的解为,则方程组的解为等内容,欢迎下载使用。
京改版七年级数学下册第五章二元一次方程组定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某污水处理厂库池里现有待处理的污水m吨.另有从城区流入库池的待处理污水(新流入污水按每小时n吨的定流量增加).若该厂同时开动2台机组,需30小时处理完污水;若同时开动3台机组,需15小时处理完污水.若5小时处理完污水,则需同时开动的机组数为( )
A.6台 B.7台 C.8台 D.9台
2、如果x:y=3:2,并且x+3y=27,则x与y中较小的值是( ).
A.3 B.6 C.9 D.12
3、若关于x,y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为( )
A.﹣ B. C. D.﹣
4、下列各组数值是二元次方程2x﹣y=5的解是( )
A. B. C. D.
5、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( )
A.3种 B.4种 C.5种 D.6种
6、由方程组可以得出关于x和y的关系式是( )
A. B. C. D.
7、若方程组的解为,则方程组的解为( )
A. B.
C. D.
8、某商场按定价销售某种商品时,每件可获利45元;按定价的8.5折销售该商品8件与将定价降低35元销售该商品12件所获利润相等.该商品的进价、定价分别是( )
A.95元,180元 B.155元,200元 C.100元,120元 D.150元,125元
9、根据大马和小马的对话求大马和小马各驮了几包货物.
大马说:“把我驮的东西给你1包多好哇!这样咱俩驮的包数就一样多了.”
小马说:“我还想给你1包呢!”
大马说:“那可不行!如果你给我1包,我驮的包数就是你的2倍了.”
小明将这个实际问题转化为二元一次方程组问题.设未知数x,y,已经列出一个方程x﹣1=y+1,则另一个方程应是( )
A.x+1=2y B.x+1=2(y﹣1)
C.x﹣1=2(y﹣1) D.y=1﹣2x
10、方程组的解是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、《孙子算经》是中国古代重要的数学著作,记有许多有趣而又不乏技巧的算术程式.其中记载:“今有甲、乙二人,持钱各不知数.甲得乙中半,可满四十八.乙得甲太半,亦满四十八.问甲、乙二人原持钱各几何?”
译文:“甲,乙两人各有若干钱.如果甲得到乙所有钱的一半,那么甲共有钱48文.如果乙得到甲所有钱的,那么乙也共有钱48文.问甲,乙二人原来各有多少钱?”
设甲原有x文钱,乙原有y文钱,可列方程组为____________.
2、如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab的值为_____.
3、为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有2千克A粗粮,3千克B粗粮,3千克C粗粮;乙种粗粮每袋装有4千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知每袋甲种粗粮的成本比每袋乙种粗粮的成本高10%,每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;当电商销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的数量之比是______.
4、如图,为某三岔路口交通环岛的简化模型,在某高峰时刻,单位时间进出路口A,B,C的机动车辆数如图所示.图中分别表示该时段单位时间通过路段AB,BC,CA的机动车辆数.(假设单位时间内在上述路段中同一路段上驶入与驶出的车辆数相等),试比较的大小关系_________.
5、已知方程组的解也是方程 的解,则a= _____,b= ____ .
三、解答题(5小题,每小题10分,共计50分)
1、若关于x,y的方程组与的解相同,求a,b的值;
2、解方程组:.
3、解方程:
4、已知关于x,y的方程组的解是正数,化简
5、在解方程组时,由于小明看错了方程①中的a,得到方程组的解为,小华看错了方程②中的b,得到方程组的解为x=2,y=1.
(1)求a、b的值;
(2)求方程组的正确解.
---------参考答案-----------
一、单选题
1、B
【分析】
设同时开动x台机组,每台机组每小时处理a吨污水,根据“如果同时开动2台机组要30小时刚好处理完污水,同时开动3台机组要15小时刚好处理完污水”,即可得出关于m,n的二元一次方程组,解之即可得出m,n的值(用含a的代数式表示),再由5小时内将污水处理完毕,即可得出关于关于x的一元一次方程,解之可得出结论.
【详解】
解:设同时开动x台机组,每台机组每小时处理a吨污水,
依题意,得,
解得:,
∵5ax=30a+5a,
∴x=7.
答:要同时开动7台机组.
故选:B.
【点睛】
本题考查的是用二元一次方程组来解决实际问题,正确的理解题意是解题的关键.
2、B
【分析】
把x:y=3:2变形为x=y,联立解方程组即可.
【详解】
解:把x:y=3:2变形为:x=y.
把x=y代入x+3y=27中:y=6.
∴x=9.
∴x、y中较小的是6.
故选:B.
【点睛】
本题实质是解二元一次方程组,掌握代入消元法是解题的关键.
3、B
【分析】
解方程组求出x=7k,y=﹣2k,代入2x+3y=6解方程即可.
【详解】
解:,
①+②得:2x=14k,即x=7k,
将x=7k代入①得:7k+y=5k,即y=﹣2k,
将x=7k,y=﹣2k代入2x+3y=6得:14k﹣6k=6,
解得:k=.
故选:B.
【点睛】
此题考查解二元一次方程组,解一元一次方程,掌握解方程及方程组的解法是解题的关键.
4、D
【分析】
将选项中的解分别代入方程2x﹣y=5,使方程成立的即为所求.
【详解】
解:A. 把代入方程2x﹣y=5,-4-1=-5≠5,不满足题意;
B. 把代入方程2x﹣y=5,0-5=-5≠5,不满足题意;
C. 把代入方程2x﹣y=5,2-3=-1≠5,不满足题意;
D. 把代入方程2x﹣y=5,6-1=5,满足题意;
故选:D.
【点睛】
本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.能正确掌握方程的解得概念是解答此题的关键.
5、A
【分析】
设购买50元和25元的两种换气扇的数量分别为x,y,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可.
【详解】
解:设购买50元和25元的两种换气扇的数量分别为x,y
由题意得:,即,
∵x、y都是正整数,
∴当x=1时,y=6,
当x=2时,y=4,当x=3时,y=2,
∴一共有3种方案,
故选A.
【点睛】
本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解.
6、C
【分析】
分别用x,y表示m,即可得到结果;
【详解】
由,得到,
由,得到,
∴,
∴;
故选C.
【点睛】
本题主要考查了二元一次方程组的化简,准确分析计算是解题的关键.
7、B
【分析】
由整体思想可得,求出x、y即可.
【详解】
解:∵方程组的解为,
∴方程组的解,
∴;
故选:B.
【点睛】
本题主要考查了二元一次方程组的求解,准确利用整体思想求解是解题的关键.
8、B
【分析】
设每件商品标价x元,进价y元,则根据题意表示出销售8件和销售12件的利润,进而得出等式,求出方程组的解即可.
【详解】
解:设每件商品标价x元,进价y元则根据题意得:
,
解得:,
答:该商品每件进价155元,标价每件200元.
故选:B.
【点睛】
本题考查了二元一次方程的应用,找出正确等量关系是解题关键.
9、B
【分析】
设大马驮x袋,小马驮y袋.本题中的等量关系是:2×(小马驮的﹣1袋)=大马驮的+1袋;大马驮的﹣1袋=小马驮的+1袋,据此可列方程组求解.
【详解】
解:设大马驮x袋,小马驮y袋.
根据题意,得.
故选:B.
【点睛】
此题考查了二元一次方程组应用题,解题的关键是正确分析题目中的等量关系.
10、C
【分析】
先用加减消元法解二元一次方程组,再确定选项即可.
【详解】
解:方程组
由①×3+②得10x=5,
解得,
把代入①中得,
所以原方程组的解是.
故选择C.
【点睛】
本题考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是关键.
二、填空题
1、
【解析】
【分析】
设甲原有x文钱,乙原有y文钱,根据题意可得,甲的钱+乙的钱的一半=48文钱,乙的钱+甲所有钱的文钱,据此列方程组可得.
【详解】
解:设甲原有x文钱,乙原有y文钱,
根据题意,得:.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
2、16
【解析】
【分析】
根据图1和图2分析可得,,即可的值,进而可得的值
【详解】
由图1可得长方形的长为,宽为,
根据图2可知大长方形的宽可以表示为
解得
故答案为:
【点睛】
本题考查了二元一次方程组,根据图中信息求得的值是解题的关键.
3、10:9##
【解析】
【分析】
设A的单价为x元,B的单价为y元,C的单价为z元,可得甲的成本,乙的成本;再求出甲、乙的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.
【详解】
解:设A的单价为x元,B的单价为y元,C的单价为z元,甲种粗粮的售价为m元,乙种粗粮的售价为n元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得
甲一袋的成本是2x+3y+3z,
乙一袋的成本是4x+2y+2z,
2x+3y+3z=(4x+2y+2z) ×(1+10%),
化简得,3x=y+z,
甲一袋的成本是11x,乙一袋的成本是10x,
∵每袋甲种粗粮的利润比每袋乙种粗粮的利润高50%.
∴m-11x=(n-10x)(1+50%),
当电商销售甲、乙两种袋装粗粮的数量之比为2:1时,销售利润率为25%;
∴2(n-10x)(1+50%)+n-10x=(2×11x+10x)×25%,
解得,n=12x,
∴m=14x,
甲一袋的售价为14x,乙一袋的售价为12x,
根据甲乙的利润,得
(14x﹣11x)a+(12x -10x)b=(11x a+10xb)×24%
化简,得
3a+2b=2.64a+2.4b
0.36a=0.4b
a:b=10:9,
故答案为:10:9.
【点睛】
本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.
4、x2>x3>x1
【解析】
【分析】
先对图表数据进行分析处理得:,再结合数据进行简单的合情推理得:,所以得到x2>x3>x1.
【详解】
解:由图可知:,
即,
所以x2>x3>x1,
故答案为:x2>x3>x1.
【点睛】
本题考查了对图表数据的分析处理能力及进行简单的合情推理,属中档题.
5、 3 1
【解析】
【分析】
根据同解原理将方程组重新组合,解方程组求出,然后代入求解即可.
【详解】
解:∵方程组的解也是方程 的解,
重新组合,
①×7-②得:
,
x=2,
把x=2代入①得y=1
∴,
代入 ,得关于a、b的方程组,
解得
故答案为3;1.
【点睛】
本题考查方程组同解问题,掌握方程组同解可以重新调整方程组成新方程组是解题关键.
三、解答题
1、
【分析】
由题意可先解方程组,求出x、y后代入含a、b的两个方程,进一步即可求出结果;
【详解】
解:解方程组,得,
代入,得,
解得
【点睛】
本题考查了同解方程组,正确理解题意、熟练掌握二元一次方程组的解法是关键.
2、
【分析】
方程组利用加减消元法求出解即可.
【详解】
解:,
①×5﹣②×8得:13x=78,
解得:x=6,
把x=6代入①得:54+8y=﹣2,
解得:y=﹣7,
则方程组的解为.
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
3、方程组的解是.
【分析】
根据加减消元法求解方程组即可;
【详解】
解:
①-②,得,
解得,
将代入①得,
解得,
所以方程组的解是.
【点睛】
本题主要考查了二元一次方程组的求解,熟练掌握运用加减消元法是解题关键.
4、5a+1
【分析】
先求出方程组的解,然后根据方程组的解是正数可知4a+5是正数,a-4的取值范围,再根据绝对值的意义化简即可.
【详解】
解:,
①+②,得
2x=8a+10,
∴x=4a+5,
把x=4a+5代入②,得
4a+5+y=3a+9,
∴y=-a+4,
∴,
∵方程组的解是正数,
∴,即4a+5是正数,a-4是负数
∴=.
【点睛】
本题考查了二元一次方程组的解法,以及化简绝对值,求出方程组的解集是解答本题的关键.
5、(1),;(2) ,
【分析】
(1)根据方程组的解的定义,应满足方程②,x=2,y=1应满足方程①,将它们分别代入方程②①,就可得到关于a,b的二元一次方程组,解得a,b的值;
(2)将a,b代入原方程组,求解即可.
【详解】
解:(1)将代入②得,解得:
将x=2,y=1代入①得,解得: ,
∴,;
(2)方程组为:,
①+②得: ,
,
解得: ,
将代入①得: ,
,
解得: ,
∴方程组的解为 .
【点睛】
本题考查了二元一次方程组的解和解二元一次方程组,能把二元一次方程组转化成一元一次方程是解(1)的关键,能求出a、b的值是解(2)的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试同步测试题,共19页。
这是一份初中数学北京课改版七年级下册第五章 二元一次方程组综合与测试练习题,共18页。试卷主要包含了已知是方程的解,则k的值为,有铅笔,已知方程组中,x等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时作业,共15页。试卷主要包含了把式子去括号后正确的是,下列运算正确的是,如果a﹣4b=0,那么多项式2,用“※”定义一种新运算等内容,欢迎下载使用。