


初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试综合训练题,共20页。试卷主要包含了下列命题中,真命题是,命题等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
2、如图,C、D在线段BE上,下列说法:
①直线CD上以B、C、D、E为端点的线段共有6条;
②图中至少有2对互补的角;
③若∠BAE=90°,∠DAC=40°,则以A为顶点的所有小于平角的角的度数和360°;
④若BC=2,CD=DE=3,点F是线段BE上任意一点,则点F到点B、C、D、E的距离之和最大值为15,最小值为11,其中说法正确的个数有( )
A.1个 B.2个 C.3个 D.4个
3、一副三角板摆放如图所示,斜边FD与直角边AC相交于点E,点D在直角边BC上,且FDAB,∠B=30°,则∠ADB的度数是( )
A.95° B.105° C.115° D.125°
4、如图,货轮O航行过程中,同时发现灯塔A和轮船B,灯塔A在货轮O北偏东40°的方向,∠AOE=∠BOW,则轮船B在货轮( )
A.西北方向 B.北偏西60° C.北偏西50° D.北偏西40°
5、若一个角比它的余角大30°,则这个角等于( )
A.30° B.60° C.105° D.120°
6、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )
A.62° B.58° C.52° D.48°
7、如所示各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
8、下列命题中,真命题是( )
A.两条直线被第三条直线所截,内错角相等 B.相等的角是对顶角
C.在同一平面内,垂直于同一条直线的两条直线平行 D.同旁内角互补
9、命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )
A.0个 B.1个 C.2个 D.3个
10、下列说法:
①和为180°且有一条公共边的两个角是邻补角;
②过一点有且只有一条直线与已知直线垂直;
③同位角相等;
④经过直线外一点,有且只有一条直线与这条直线平行,
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,过直线AB上一点O作射线OC、OD ,并且OD是∠ AOC的平分线,∠BOC=29°18′, 则∠BOD的度数为___________.
2、若=27°,则的补角是____________
3、_________°,的余角是________.
4、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______.
5、已知,那么的余角是_____.
三、解答题(5小题,每小题10分,共计50分)
1、完成下面的证明:
已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.
证明:∵AB⊥AC(已知)
∴∠ =90°( )
∵∠1=30°,∠B=60°(已知)
∴∠1+∠BAC+∠B= ( )
即∠ +∠B=180°
∴AD∥BC( )
2、如图,CD⊥AB于D,点F是BC上任意一点,FE⊥AB于E,且∠1=∠2,∠B=60°.试求∠ADG的度数.
3、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.
4、如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.则∠BON=______°.
(2)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?
5、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF( , )
∵∠A=∠2 ∴( )
( , )
∴ AB∥CD∥EF( , )
∴ ∠A= ,∠C= ,
( , )
∵ ∠AFE =∠EFC+∠AFC ,∴ = .
---------参考答案-----------
一、单选题
1、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
2、B
【分析】
按照两个端点确定一条线段即可判断①;根据补角的定义即可判断②;根据角的和差计算机可判断③;分两种情况讨论:当点F在线段CD上时点F到点B、C、D、E的距离之和最小,当点F和E重合时,点F到点B、C、D、E的距离之和最大计算即可判断④.
【详解】
解:①以B、C、D、E为端点的线段BC、BD、BE、CE、CD、DE共6条,故此说法正确;
②图中互补的角就是分别以C、D为顶点的两对邻补角,即∠BCA和∠ACD互补,∠ADE和∠ADC互补,故此说法正确;
③由∠BAE=90°,∠CAD=40°,根据图形可以求出∠BAC+∠DAE+∠DAC+∠BAE+∠BAD+∠CAE=3∠BAE+∠CAD=310°,故此说法错误;
④如图1,当F不在CD上时,FB+FC+FD+FE=BE+CD+2FC,如图2当F在CD上时,FB+FC+FD+FE=BE+CD,如图3当F与E重合时,FB+FC+FE+FD=BE+CD+2ED,同理当F与B重合时,FB+FC+FE+FD=BE+CD+2BC,
∵BC=2,CD=DE=3,
∴当F在的线段CD上最小,则点F到点B、C、D、E的距离之和最小为FB+FE+FD+FC=2+3+3+3=11,当F和E重合最大则点F到点B、C、D、E的距离之和FB+FE+FD+FC=17,故此说法错误.
故选B.
【点睛】
本题主要考查了线段的数量问题,补角的定义,角的和差,线段的和差,解题的关键在于能够熟练掌握相关知识进行求解.
3、B
【分析】
由题意可知∠ADF=45°,则由平行线的性质可得∠B+∠BDF=180°,求得∠BDF=150°,从而可求∠ADB的度数.
【详解】
解:由题意得∠ADF=45°,
∵,∠B=30°,
∴∠B+∠BDF=180°,
∴∠BDF=180°﹣∠B=150°,
∴∠ADB=∠BDF﹣∠ADF=105°.
故选:B
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同旁内角互补.
4、D
【分析】
根据题意得:∠AON=40°,再由等角的余角相等,可得∠BON=∠AON=40°,即可求解.
【详解】
解:根据题意得:∠AON=40°,
∵∠AOE=∠BOW,∠AON+∠AOE=90°,∠BON+∠BOW=90°,
∴∠BON=∠AON=40°,
∴轮船B在货轮的北偏西40°方向.
故选:D
【点睛】
本题主要考查了余角的性质,方位角,熟练掌握等角的余角相等是解题的关键.
5、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
6、A
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,
∴,
∴,
故选:A.
【点睛】
本题考查平行线的性质,掌握平行线的性质是解题的关键.
7、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
8、C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
解:A、错误,当被截的直线平行时形成的同位角才相等;
B、错误,对顶角相等但相等的角不一定是对顶角;
C、正确,必须强调在同一平面内;
D、错误,两直线平行同旁内角才互补.
故选:C.
【点睛】
主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
9、C
【分析】
利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.
【详解】
解:①对顶角相等,正确,是真命题;
②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
③相等的角是对顶角,错误,是假命题,反例“角平分线分成的两个角相等”,但它们不是对顶角;
由“两直线平行,同位角相等”,前提是两直线平行,故④是假命题;
故选:C.
【点睛】
本题考查了命题与定理,解题的关键是了解对顶角的性质、平行线的性质等基础知识.
10、B
【分析】
根据举反例可判断①,根据垂线的定义可判断②,根据举反例可判断③,根据平行线的基本事实可判断④.
【详解】
解:①如图∠AOC=∠2=150°,∠BOC=∠1=30°,满足∠1+∠2=180°,射线OC是两角的共用边,但∠1与∠2不是邻补角,故①不正确;
②在同一个面内,过一点有且只有一条直线与已知直线垂直,故②不正确;
③如图直线a、b被直线c所截,∠1与∠2是同位角,但∠1>∠2,故③不正确;
④经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故④正确;
其中正确的有④一共1个.
故选择B.
【点睛】
本题考查基本概念的理解,掌握基本概念是解题关键.
二、填空题
1、
【分析】
先求出的度数,再根据角平分线的运算可得的度数,然后根据角的和差即可得.
【详解】
解:,
,
是的平分线,
,
,
故答案为:.
【点睛】
本题考查了邻补角、与角平分线有关的计算,熟记角的运算法则是解题关键.
2、153°
【分析】
根据补角的定义求解即可.
【详解】
解:∵=27°,则的补角=180°-27°=153°
故答案为:153°
【点睛】
本题考查了补角的定义,熟练求补角的方法是解题的关键.
3、
【分析】
根据角度的四则运算法则、余角的定义即可得.
【详解】
解:,
,
,
,
,
;
的余角是,
故答案为:,.
【点睛】
本题考查了角度的四则运算、余角,熟练掌握角度的四则运算法则和余角的定义是解题关键.
4、35°
【分析】
根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.
【详解】
解:∵OE⊥AB,
∴∠AOE=90°,
∵ ,
∴∠AOC=90°- ,
∴∠BOD=∠AOC= ,
故答案为:35°.
【点睛】
本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.
5、
【分析】
直接利用互余两角的关系,结合度分秒的换算得出答案.
【详解】
∵,
∴的余角为:.
故答案为:.
【点睛】
此题主要考查了余角的定义和分秒的转换,正确把握相关定义是解题关键.
三、解答题
1、见解析
【解析】
【分析】
先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.
【详解】
证明:∵(已知),
∴(垂直的定义),
∵,(已知),
∴(等量关系),
即,
∴(同旁内角互补,两直线平行).
【点睛】
本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.
2、60°
【解析】
【分析】
由CD⊥AB,FE⊥AB,则,则∠2=∠4,从而证得,得∠B=∠ADG,则答案可解.
【详解】
解:CD⊥AB于D,FE⊥AB于E,
∴,
∴∠2=∠4,
又∵∠1=∠2,
∴∠1=∠4,
∴,
∴.
【点睛】
本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.
3、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
【解析】
【分析】
三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
【详解】
(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
以第一个命题为例证明如下:
∵AB∥DE,
∴∠B=∠DOC.
∵BC∥EF,
∴∠DOC=∠E,
∴∠B=∠E.
【点睛】
本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
4、(1)35;(2)5.5或23.5
【解析】
【分析】
(1)先计算∠MOB的度数,再利用互余原理计算即可;
(2)分ON的反向延长线平分∠AOC和ON所在射线平分∠AOC两种情形计算,先计算需要旋转的度数,除以旋转的速度即可得到旋转需要的时间.
【详解】
解:(1)如图2,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON-∠MOB=35°,
故答案为:35°;
(2)∵∠BOC=110°
∴∠AOC=70°,
当射线NO的延长线恰好平分锐角∠AOC时,
∵∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,10t=55,
故t=5.5.
当ON平分∠AOC时,
逆时针旋转的角度为:360°-90°-35°=235°,
由题意得,10t=235,
∴t=23.5;
故t=5.5秒或t=23.5秒.
【点睛】
本题考查了旋转的意义,角的平分线,互余的性质,分类的思想,熟练掌握性质,正确进行分类是解题的关键.
5、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【解析】
【分析】
根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可.
【详解】
证明:∵ ∠1+∠AFE=180°
∴ CD∥EF(同旁内角互补,两直线平行),
∵∠A=∠2 ,
∴( AB∥CD ) (同位角相等,两直线平行),
∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)
∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等)
∵ ∠AFE =∠EFC+∠AFC ,
∴ ∠A = ∠C+∠AFC .
故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC .
【点睛】
本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.
相关试卷
这是一份2020-2021学年第七章 观察、猜想与证明综合与测试练习,共18页。试卷主要包含了若∠α=55°,则∠α的余角是,如图,不能推出a∥b的条件是,如图,直线AB,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共19页。试卷主要包含了命题,下列命题等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共22页。试卷主要包含了下列说法,命题等内容,欢迎下载使用。