数学七年级下册第七章 观察、猜想与证明综合与测试一课一练
展开这是一份数学七年级下册第七章 观察、猜想与证明综合与测试一课一练,共23页。试卷主要包含了下列命题是假命题的有,命题等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线a∥b,Rt△ABC的直角顶点C在直线b上.若∠1=50°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
2、∠A的余角是30°,这个角的补角是( )
A.30° B.60° C.120° D.150°
3、一个角的余角比这个角的补角的一半小40°,则这个角为( )
A.50° B.60° C.70° D.80°
4、下列各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
5、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )
A.40° B.50° C.140° D.150°
6、下列命题是假命题的有( )
①在同一个平面内,不相交的两条直线必平行;
②内错角相等;
③相等的角是对顶角;
④两条平行线被第三条直线所截,所得同位角相等.
A.4个 B.3个 C.2个 D.1个
7、命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )
A.0个 B.1个 C.2个 D.3个
8、若一个角比它的余角大30°,则这个角等于( )
A.30° B.60° C.105° D.120°
9、如图,点在直线上,,若,则的大小为( )
A.30° B.40° C.50° D.60°
10、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则的余角是________.
2、已知一个角等于70°38′,则这个角的余角等于______.
3、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
4、一个角的度数是48°37',则这个角的余角的度数为__________.
5、如图,∠AOB=180°,OD是∠BOC的平分线,OE是∠AOC的平分线,则图中与∠COD互补的角是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、将一个含有60°角的三角尺ABC的直角边BC放在直线MN上,其中∠ABC=90°,∠BAC=60°.点D是直线MN上任意一点,连接AD,在∠BAD外作∠EAD,使∠EAD=∠BAD.
(1)如图,当点D落在线段BC上时,若∠BAD=18°,求∠CAE的度数;
(2)当点E落在直线AC上时,直接写出∠BAD的度数;
(3)当∠CAE:∠BAD=7:4时,直接写出写∠BAD的度数.
2、如图,∠AOD = 130°,∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
(1)∠COD = _______ ;
(2)平面内射线OM满足∠AOM = 2∠DOM,求∠AOM的大小;
(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.
3、(1)已知:如图1所示,已知∠AOC=90°,∠AOB=38°,OD平分∠BOC,请判断∠AOD和∠BOD之间的数量关系,并说明理由;
(2)已知:如图2,点O在直线AD上,射线OC平分∠BOD.请判断∠AOC与∠BOC之间的数量关系,并说明理由;
(3)已知:如图3,∠EPQ和∠FPQ互余,射线PM平分∠EPQ,射线PN平分∠FPQ.直接写出锐角∠MPN的度数是 .
4、小明同学遇到这样一个问题:
如图①,已知:AB∥CD,E为AB、CD之间一点,连接BE,ED,得到∠BED.
求证:∠BED=∠B+∠D.
小亮帮助小明给出了该问的证明.
证明:
过点E作EF∥AB
则有∠BEF=∠B
∵AB∥CD
∴EF∥CD
∴∠FED=∠D
∴∠BED=∠BEF+∠FED=∠B+∠D
请你参考小亮的思考问题的方法,解决问题:
(1)直线l1∥l2,直线EF和直线l1、l2分别交于C、D两点,点A、B分别在直线l1、l2上,猜想:如图②,若点P在线段CD上,∠PAC=15°,∠PBD=40°,求∠APB的度数.
(2)拓展:如图③,若点P在直线EF上,连接PA、PB(BD<AC),直接写出∠PAC、∠APB、∠PBD之间的数量关系.
5、已知点O为直线AB上一点,将直角三角板MON按如图所示放置,且直角顶点在O处,在内部作射线OC,且OC恰好平分.
(1)若,求的度数;
(2)若,求的度数.
---------参考答案-----------
一、单选题
1、B
【分析】
由平角的定义可求得∠BCD的度数,再利用平行线的性质即可求得∠2的度数.
【详解】
解:如图所示:
∵∠1=50°,∠ACB=90°,
∴∠BCD=180°﹣∠1﹣∠BCD=40°,
∵a∥b,
∴∠2=∠BCD=40°.
故选:B.
【点睛】
本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.
2、C
【分析】
根据一个角的补角比这个角的余角大列式计算即可得解.
【详解】
解:一个角的余角是,
这个角的补角是.
故选:C.
【点睛】
本题考查了余角和补角,解题的关键是熟记概念并理清余角和补角的关系.
3、D
【分析】
设这个角为x,根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,表示出它的余角和补角,列式解方程即可.
【详解】
设这个角为x,则它的余角为(90°-x),补角为(180°-x),
依题意得
解得x=80°
故选D.
【点睛】
本题考查了余角和补角的概念,是基础题,熟记概念并列出方程是解决本题的关键.
4、C
【分析】
根据对顶角的定义作出判断即可.
【详解】
解:根据对顶角的定义可知:只有C选项的是对顶角,其它都不是.
故选C.
【点睛】
本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.
5、C
【分析】
由于拐弯前、后的两条路平行,用平行线的性质求解即可.
【详解】
解:∵拐弯前、后的两条路平行,
∴(两直线平行,内错角相等).
故选:C.
【点睛】
本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.
6、C
【分析】
根据平面内两条直线的位置关系:平行,相交,可判断①,根据两直线平行,内错角相等可判断②,根据对顶角的定义:有公共的顶点,角的两边互为反向延长线可判断③,由两直线平行,同位角相等可判断④,从而可得答案.
【详解】
解:在同一个平面内,不相交的两条直线必平行;原命题是真命题,故①不符合题意;
两直线平行,内错角相等;原命题是假命题;故②符合题意;
相等的角不一定是对顶角;原命题是假命题;故③符合题意;
两条平行线被第三条直线所截,所得同位角相等;原命题是真命题,故④不符合题意;
故选C
【点睛】
本题考查的是真假命题的判断,同时考查平面内两条直线的位置关系,平行线的性质,对顶角的定义,掌握“判断真假命题的方法”是解本题的关键.
7、C
【分析】
利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.
【详解】
解:①对顶角相等,正确,是真命题;
②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
③相等的角是对顶角,错误,是假命题,反例“角平分线分成的两个角相等”,但它们不是对顶角;
由“两直线平行,同位角相等”,前提是两直线平行,故④是假命题;
故选:C.
【点睛】
本题考查了命题与定理,解题的关键是了解对顶角的性质、平行线的性质等基础知识.
8、B
【分析】
设这个角为α,则它的余角为:90°-α,由“一个角比它的余角大30°”列方程解方程即可的解.
【详解】
解:设这个角为α,则它的余角为:90°-α,
由题意得,α-(90°-α)=30°,
解得:α=60°,
故选:B
【点睛】
本题考查了余角的定义和一元一次方程的应用,根据题意列出等量关系是解题的关键.
9、D
【分析】
根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.
【详解】
解:∵,
∴∠BOC=180°-150°=30°,
∵,即∠COD=90°,
∴∠BOD=90°-30°=60°,
故选:D
【点睛】
本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.
10、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
二、填空题
1、
【分析】
根据互余两角的和等于90°,即可求解.
【详解】
解:∵,
∴的余角是 .
故答案为:
【点睛】
本题主要考查了余角的性质,熟练掌握互余两角的和等于90°是解题的关键.
2、19°22′
【分析】
根据余角的定义解决此题.
【详解】
解:∵90°-70°38'=19°22′.
∴根据余角的定义,这个角的余角等于19°22′.
故答案为:19°22′.
【点睛】
本题主要考查了余角的定义,熟练掌握余角的定义是解决本题的关键.
3、48° 132° 48°
【分析】
根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
【详解】
解:∵ //,∠1=48°,
∴∠2=∠1=48°,
∵ //,∠1=48°,
∴∠4=∠1=48°,
∵ //,
∴∠3+∠4=180°
∴∠3=180°-∠4=180°-48°=132°
故答案为:48°;132°;48°
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
4、41°23'
【分析】
根据余角的概念求解即可.余角:如果两个角相加等于90°,那么这两个角互为余角.
【详解】
解:∵一个角的度数是48°37',
∴这个角的余角的度数为90°-48°37'=41°23'.
故答案为:41°23'.
【点睛】
此题考查了余角的概念,解题的关键是熟练掌握余角的概念.余角:如果两个角相加等于90°,那么这两个角互为余角.
5、∠AOD
【分析】
根据角平分线的性质,可得∠AOE=∠COE,∠COD=∠BOD,再根据补角的定义求解即可.
【详解】
解:∵OD是∠BOC的平分线,
∴∠COD=∠BOD,
∵∠BOD+∠AOD=180°,
∴∠COD+∠AOD=180°,
∴与∠COD互补的是∠AOD.
故答案为:∠AOD.
【点睛】
本题考查了补角的定义,角平分线的定义等知识,解答本题的关键是理解补角的定义,掌握角平分线的性质.
三、解答题
1、(1);(2);(3)的值为:或.
【解析】
【分析】
(1)先求解 再利用角的和差关系可得答案;
(2)分两种情况讨论,当落在的下方时,如图,当落在的上方时,如图,再结合已知条件可得答案;
(3)分两种情况讨论,如图,当落在的内部时,如图,当落在的外部时,再利用角的和差倍分关系可得答案.
【详解】
解:(1) ∠BAD=18°,∠EAD=∠BAD,
(2)当落在的下方时,如图,
当落在的上方时,如图,
而
(3)当落在的内部时,如图,
∠CAE:∠BAD=7:4,
当落在的外部时,如图,
∠CAE:∠BAD=7:4,
设则
解得:
综上:的值为:或.
【点睛】
本题考查的是角的和差倍分关系,周角的含义,邻补角的含义,三角形中的角度问题,一元一次方程的应用,根据题干信息画出符合题意的图形,再进行分类讨论是解本题的关键.
2、(1);(2)∠AOM的大小为或(3)旋转时间t(秒)的取值范围为
【解析】
【分析】
(1),用分别表示出与的大小,利用角之间的关系,即可求解.
(2)分射线OM在∠AOD 的内部和外部两类情况进行讨论,利用角与角之间的关系,即可求出答案.
(3)先观察到,寻找临界情况,利用角的关系求出对应两种临界情况下的旋转角度,进而求出时间t(秒)的取值范围.
【详解】
(1)解:设:,
∠BOC:∠COD = 1:2,∠AOB是∠COD补角的.
,。
,
,
解得:,
故.
(2)解:当射线OM在∠AOD 的内部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
当射线OM在∠AOD 的外部时,如下图所示:
∠AOD = 130°,且∠AOM = 2∠DOM,
故∠AOM的大小为或.
(3)解:有(1)可得:,
射线OP为∠AOB的平分线,OQ为∠COD的平分线,
,,
可以观察到:,
若要求解时间的取值范围,需要找到临界情况,
当与重合时,此时恰好有,, 如下图所示:
可以观察到,若与未重合之前,必有一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最小值,
由题意可知:一共旋转了,故时间,
,
当与重合时,此时有,,
如下图所示:
若此时继续往下旋转,必有,一定不满足∠POQ+∠AOD=50°,故此时的时间恰好取到最大值,
由题意可知:一共旋转了,故时间,
,
综上所述:.
【点睛】
本题主要是考查了求解角度大小、角平分线的性质以及角中的动点问题,熟练地利用角与角之间的关系,求解未知角的度数,针对求解动点的时间取值范围,尝试利用条件,找到满足题意的临界情况,是求解该题的关键.
3、(1)∠AOD+∠BOD=90°,理由见解析;(2)∠AOC+∠BOC=180°,理由见解析;(3)45°
【解析】
【分析】
(1)由∠AOC=90°,得到∠AOD+∠COD=90°,再由OD平分∠BOC,可得∠BOC=2∠COD=2∠BOD,则∠AOD+∠BOD=90°;
(2)由OC平分∠BOD,得到∠BOD=2∠COD=2∠BOC,再由∠AOC+∠COD=180°,即可得到∠AOC+∠BOC=180°;
(3)由∠EPQ和∠FPQ互余,得到∠EPQ+∠FPQ=90°,由射线PM平分∠EPQ,射线PN平分∠FPQ,得到,,则.
【详解】
解:(1)∠AOD+∠BOD=90°,理由如下:
∵∠AOC=90°,
∴∠AOD+∠COD=90°,
∵OD平分∠BOC,
∴∠BOC=2∠COD=2∠BOD,
∴∠AOD+∠BOD=90°;
(2)∠AOC+∠BOC=180°,理由如下:
∵OC平分∠BOD,
∴∠BOD=2∠COD=2∠BOC,
∵∠AOC+∠COD=180°,
∴∠AOC+∠BOC=180°;
(3)∵∠EPQ和∠FPQ互余,
∴∠EPQ+∠FPQ=90°,
∵射线PM平分∠EPQ,射线PN平分∠FPQ,
∴,,
∴,
故答案为:45°.
【点睛】
本题主要考查了与余角和补角有关的计算,角平分线的定义,解题的关键在于能够熟练掌握相关知识进行求解.
4、(1)55°;(2)当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD;
【解析】
【分析】
(1)过点P作PG∥l1,可得∠APG=∠PAC=15°,由l1∥l2,可得PG∥l2,则∠BPG=∠PBD=40°,即可得到∠APB=∠APG+∠BPG=55°;
(2)分当P在线段CD上时;当P在DC延长线上时;当P在CD延长线上时,三种情况讨论求解即可.
【详解】
解:(1)如图所示,过点P作PG∥l1,
∴∠APG=∠PAC=15°,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG+∠BPG=55°;
(2)由(1)可得当P在线段CD上时,∠APB=∠PAC +∠PBD;
如图1所示,当P在DC延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠BPG-∠APG=∠PBD-∠PAC;
如图2所示,当P在CD延长线上时,过点P作PG∥l1,
∴∠APG=∠PAC,
∵l1∥l2,
∴PG∥l2,
∴∠BPG=∠PBD=40°,
∴∠APB=∠APG-∠BPG=∠PAC-∠PBD;
∴综上所述,当P在线段CD上时,∠APB=∠PAC +∠PBD;当P在DC延长线上时,∠APB=∠PBD-∠PAC;当P在CD延长线上时,∠APB=∠PAC-∠PBD.
【点睛】
本题主要考查了平行线的性质,平行公理的应用,解题的关键在于能够熟练掌握平行线的性质.
5、(1)48°;(2)45°.
【解析】
【分析】
(1)先根据余角的定义求出∠MOC,再根据角平分线的定义求出∠BOM,然后根据∠AOM=180°-∠BOM计算即可;
(2)根据角的倍分关系以及角平分线的定义即可求解;
【详解】
解:(1)∵∠MON=90°,∠CON=24°,
∴∠MOC=90°-∠CON=66°,
∵OC平分∠MOB,
∴∠BOM=2∠MOC=132°,
∴∠AOM=180°-∠BOM=48°;
(2)∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°-∠MON-∠BON=180°-90°-45°=45°;
【点睛】
本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.
相关试卷
这是一份2020-2021学年第七章 观察、猜想与证明综合与测试练习,共18页。试卷主要包含了若∠α=55°,则∠α的余角是,如图,不能推出a∥b的条件是,如图,直线AB,下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共19页。试卷主要包含了命题,下列命题等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后复习题,共22页。试卷主要包含了下列说法,命题等内容,欢迎下载使用。

