初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题
展开这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共19页。试卷主要包含了下列事件中,是必然事件的是,下列事件中,属于随机事件的是,下列说法正确的是.,下列事件是随机事件的是等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中.不断重复这一过程,获得数据如下:
摸球的次数 | 200 | 300 | 400 | 1000 | 1600 | 2000 |
摸到黑球的频数 | 142 | 186 | 260 | 668 | 1064 | 1333 |
摸到黑球的频率 | 0.7100 | 0.6200 | 0.6500 | 0.6680 | 0.6650 | 0.6665 |
该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有( )个.
A.4 B.3 C.2 D.1
2、有四张形状相同的卡片,正面分别印着矩形、菱形、等边三角形、圆四个图案,卡片背面全一样,随机抽出一张,刚好抽到正面的图案是中心对称图形的概率是( )
A. B. C. D.1
3、下列说法中正确的是( )
A.“打开电视,正在播放《新闻联播》”是必然事件
B.某次抽奖活动中奖的概率为,说明每买100张奖券,一定有一次中奖
C.想了解某市城镇居民人均年收入水平,宜采用抽样调查
D.我区未来三天内肯定下雪
4、下列事件中,是必然事件的是( )
A.同位角相等
B.打开电视,正在播出特别节目《战疫情》
C.经过红绿灯路口,遇到绿灯
D.长度为4,6,9的三条线段可以围成一个三角形.
5、下列事件中,属于随机事件的是( )
A.用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形
B.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
C.如果一个三角形有两个角相等,那么两个角所对的边也相等
D.有两组对应边和一组对应角分别相等的两个三角形全等
6、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个.
A.12 B.15 C.18 D.54
7、下列成语描述的事件为随机事件的是( )
A.偷天换日 B.水涨船高 C.守株待兔 D.旭日东升
8、下列说法正确的是( ).
A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件
B.“打开电视机,正在播放乒乓球比赛”是必然事件
C.“面积相等的两个三角形全等”是不可能事件
D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次
9、下列事件是随机事件的是( )
A.抛出的篮球会下落
B.经过有交通信号灯的路口,遇到红灯
C.任意画一个三角形,其内角和是
D.400人中有两人的生日在同一天
10、下列事件中,是必然事件的是( )
A.如果a2=b2,那么a=b
B.车辆随机到达一个路口,遇到红灯
C.2021年有366天
D.13个人中至少有两个人生肖相同
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是________.
2、从分别写有数字、、、、0、1、2、3、4的九张一样的卡片中,任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是___________.
3、从,0,1,2这四个数中任取一个数,作为关于x的方程中a的值,则该方程有实数根的概率为_________.
4、在一个不透明的袋子里装有红球和白球共30个,这些球除颜色外其余都相同.小明通过多次试验发现,摸出白球的频率稳定在0.3左右,则袋子里可能有 _____个红球.
5、在“Wishyousuccess”中,任选一个字母,这个字母为“s”的概率为_____.
三、解答题(5小题,每小题10分,共计50分)
1、张老师将4个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干学生进行摸球实验,每次摸出一个球(有放回),如表是活动进行中的一组部分统计数据.
摸球的次数n | 100 | 150 | 200 | 500 | 700 | 1000 |
摸到黑球的次数m | 24 | 29 | 60 | 126 | 177 | 251 |
摸到黑球的频率 | 0.24 | 0.193 | 0.30 | 0.252 | 0.253 | a |
(1)根据上表数据计算a=_________;估计从袋中摸出一个球是黑球的概率是_________.(精确到0.01)
(2)估算袋中白球的个数.
2、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求.为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“40—70分钟以内完成”,C表示“70—90分钟以内完成”,D表示“90分钟以上完成”.根据调查结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.
(1)这次调查的总人数是 人;
(2)扇形统计图中,B类扇形的圆心角是 °;
(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率.
3、山西某高校为了弘扬女排精神,组建了女排社团,通过测量女同学的身高(单位:cm),并绘制了两幅不完整的统计图,请结合图中提供的信息,解答下列问题.
(1)填空:该排球社团一共有 名女同学,a= .
(2)把频数分布直方图补充完整.
(3)随机抽取1名学生,估计这名学生身高高于160cm的概率.
4、口袋里有除颜色外其它都相同的6个红球和4个白球.
(1)先从袋子里取出m()个白球,再从袋子里随机摸出一个球,将“摸出红球”记为事件A.
①如果事件A是必然事件,请直接写出m的值.
②如果事件A是随机事件,请直接写出m的值.
(2)先从袋子中取出m个白球,再放入m个一样的红球并摇匀,摸出一个球是红球的可能性大小是,求m的值.
5、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.
(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;
(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.
-参考答案-
一、单选题
1、C
【分析】
该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案.
【详解】
解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,
估计摸出黑球的概率为0.667,
则摸出绿球的概率为,
袋子中球的总个数为,
由此估出黑球个数为,
故选:C.
【点睛】
本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
2、C
【分析】
先判断出矩形、菱形、等边三角形、圆的中心对称图形,在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,再根据概率公式解答即可.
【详解】
解:在矩形、菱形、等边三角形、圆中,中心对称图形有矩形、菱形和圆,共3个;
则P(中心对称图形)=;
故选:C.
【点睛】
本题考查中心对称图形的识别,列举法求概率,掌握中心对称图形的识别,列举法求概率是解题关键.
3、C
【分析】
根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.
【详解】
A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;
B. 某次抽奖活动中奖的概率为,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;
C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;
D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.
4、D
【分析】
根据必然事件的概念即可得出答案.
【详解】
解:∵同位角不一定相等,为随机事件,
∴A选项不合题意,
∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,
∴B选项不合题意,
∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,
∴C选项不合题意,
∵4+6>9,
∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.
∴D选项符合题意,
故选:D.
【点睛】
本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.
5、D
【分析】
根据三角形三边关系判断A选项;根据勾股定理判断B选项;根据等腰三角形的性质:等边对等角判断C选项;根据全等三角形的判定即可判断D选项.
【详解】
A.因为,所以用长度分别是1cm,2cm,3cm的细木条首尾顺次相连可组成一个三角形为不可能事件,故此选项错误;
B.因为满足勾股定理,所以用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形为必然事件,故此选项错误;
C.因为三角形有两个角相等则这个三角形是等腰三角形,故等腰三角形等角对等边,所以如果一个三角形有两个角相等,那么两个角所对的边也相等为必然事件,故此选项错误;
D.根据SAS可以判断两三角形全等,但ASS不能判断两三角形全等,所以有两组对应边和一组对应角分别相等的两个三角形全等为随机事件,故此选项正确.
故选:D.
【点睛】
本题考查随机事件,随机事件可能发生也可能不发生,必然事件一定发生,不可能事件一定不发生,掌握随机事件的定义是解题的关键.
6、A
【分析】
根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可.
【详解】
解:设有红色球x个,
根据题意得:,
解得:x=12,
经检验,x=12是分式方程的解且符合题意.
故选:
【点睛】
本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数.
7、C
【分析】
根据随机事件的定义:在一定条件下,可能发生,也可能不发生的事件,叫做随机事件,进行求解即可.
【详解】
解:A、偷天换日,是不可能发生的,不是随机事件,不符合题意;
B、水涨必定船高,是必然会发生,不是随机事件,不符合题意;
C、守株待兔,可能发生,也可能不发生,是随机事件,符合题意;
D、旭日东升,是必然会发生的,不是随机事件,不符合题意;
故选C.
【点睛】
本题主要考查了随机事件的定义,熟知定义是解题的关键.
8、A
【分析】
根据必然事件、不可能事件、随机事件的概念可区别各类事件.
【详解】
解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;
B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;
C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;
D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;
故选:A.
【点睛】
本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
9、B
【分析】
根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.
【详解】
A.抛出的篮球会下落是必然事件,故此选项不符合题意;
B.经过有交通信号灯的路口,遇到红灯是随机事件,故此选项符合题意;
C.任意画一个三角形,其内角和是是不可能事件,故此选项不符合题意;
D. 400人中有两人的生日在同一天是必然事件,故此选项不符合题意;
故选B
【点睛】
此题主要考查了事件的确定性和不确定性,要熟练掌握,解答此题的关键是要明确:事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.
10、D
【分析】
在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.
【详解】
解:如果a2=b2,那么,原说法是随机事件,故A不符合题意;
车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;
2021年是平年,有365天,原说法是不可能事件,故C不符合题意;
13个人中至少有两个人生肖相同,是必然事件,故D符合题意,
故选:D.
【点睛】
本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.
二、填空题
1、
【分析】
从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得.
【详解】
解:由题意,从袋中随机摸出一个球共有种等可能的结果,其中摸到黄球有3种结果,
则如果从中随机摸出一个,那么摸到黄球的可能性大小是,
故答案为:.
【点睛】
本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.
2、
【分析】
让绝对值小于2的数的个数除以数的总数即为所抽卡片上数字的绝对值小于2的概率.
【详解】
解:∵数的总个数有9个,绝对值小于2的数有−1,0,1共3个,
∴任意抽取一张卡片,则所抽卡片上数字的绝对值小于2的概率是=,
故答案为:.
【点睛】
本题考查概率的求法;得到绝对值小于2的数的个数是解决本题的易错点.
3、
【分析】
根据一元二次方程的定义,可得,根据一元二次方程的判别式的意义得到,可得,然后根据概率公式求解.
【详解】
解:∵当且,一元二次方程有实数根
∴且
从,0,1,2这四个数中任取一个数,符合条件的结果有
所得方程有实数根的概率为
故答案为:
【点睛】
本题考查了列举法求概率,一元二次方程的定义,一元二次方程根的判别式,掌握以上知识是解题的关键.
4、21
【分析】
根据大量反复试验下频率的稳定值即为概率,即可用球的总数乘以白球的频率,可求得白球数量,从而得到红球的熟练.
【详解】
解:∵小明通过多次试验发现,摸出白球的频率稳定在0.3左右,
∴白球的个数=30×0.3=9个,
∴红球的个数=30-9=21个,
故答案为:21.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
5、
【分析】
根据概率公式进行计算即可.
【详解】
解:任选一个字母,这个字母为“s”的概率为:,
故答案为:.
【点睛】
本题考查了概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
三、解答题
1、(1)0.251;0.25;(2)12个
【分析】
(1)用大量重复试验中事件发生的频率稳定到某个常数来表示该事件发生的概率即可;
(2)用概率公式列出方程求解即可.
【详解】
解:(1)251÷1000=0.251;
∵大量重复试验事件发生的频率逐渐稳定到0.25附近,
∴估计从袋中摸出一个球是黑球的概率是0.25;
故答案为:0.251;0.25.
(2)设袋中白球为x个,
x=12,
经检验x=12是方程的解,
答:估计袋中有2个白球.
【点睛】
此题考查了利用频率估计概率,在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近.
2、(1)40;(2)108;(3)
【分析】
(1)根据A类别人数及其所占百分比可得被调查的总人数;
(2)用360°乘以B类别人数所占比例即可;
(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可.
【详解】
解:(1)参加这次调查的学生总人数为6÷15%=40(人);
故答案为:40;
(2)扇形统计图中,B部分扇形所对应的圆心角是360°×=108°,
故答案为:108;
(3)画树状图为:
共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,
∴所抽取的2名学生恰好是1名男生和1名女生的概率为.
【点睛】
本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.
3、(1)100,30;(2)见解析;(3)0.55
【分析】
(1)根据频数分布直方图中组的人数除以扇形统计图中组的所占百分比即可求得总人数,根据总人数减去组的人数即可求得组的人数,除以总人数即可求得的值;
(2)根据(1)中的结论补全统计图即可;
(3)根据身高高于160cm除以总人数即可求得随机抽取1名学生,估计这名学生身高高于160cm的概率
【详解】
解:(1)总人数为:;
组的人数为
故答案为:
(2)如图,
(3)总人数为,身高高于160cm为
随机抽取1名学生,估计这名学生身高高于160cm的概率为
【点睛】
本题考查了频数直方图和扇形统计图信息关联,简单概率计算,从统计图中获取信息是解题的关键.
4、(1)①4;②1或2或3;(2)
【分析】
(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,即可求解;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,可得此时有白球 1个或2个或3个,即可求解;
(2)根据题意得:所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为. 再根据概率公式,即可求解.
【详解】
解:(1)①根据题意得:当先从袋子里取出所有的白球,再从袋子里随机摸出一个球,一定为红球,
∴ ;
② 根据题意得:当袋子里有白球时,再从袋子里随机摸出一个球,可能为白球,也可能为红球,
∴此时有白球 1个或2个或3个,
即m的值为1或2或3;
(2)所有可能发生的结果个数为10,且每种结果发生的可能性都相同;摸出红球的结果个数为.根据题意得:
,
∴.
【点睛】
本题主要考查了必然事件和随机事件定义,求概率,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,概率公式是解题的关键.
5、
(1)3种可能,分别是“微信”“QQ”,“电话”
(2)
【分析】
(1)用例举法可得甲,乙两位同学选择沟通方式都有3种可能.
(2)画树状图展示所有9种等可能的结果数,再找出恰好选中同一种沟通方式的结果数,然后根据概率公式求解.
(1)
解:甲,乙两位同学选择沟通方式都有3种可能,分别是“微信”“QQ”,“电话”.
(2)
解:画出树状图,如图所示
所有情况共有9种情况,其中恰好选择同一种沟通方式的共有3种情况, 故两人恰好选中同一种沟通方式的概率为.
【点睛】
本题考查了判断简单随机事件的可能性,利用列表法与树状图法求解等可能事件的概率;利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
相关试卷
这是一份沪科版九年级下册第26章 概率初步综合与测试同步测试题,共20页。试卷主要包含了下列说法中,正确的是,有两个事件,事件等内容,欢迎下载使用。
这是一份初中沪科版第26章 概率初步综合与测试巩固练习,共20页。试卷主要包含了下列说法正确的有,任意掷一枚骰子,下列事件中,下列说法正确的是.,如图,有5张形状等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试课后测评,共21页。试卷主要包含了下列判断正确的是,下列事件中,是必然事件的是等内容,欢迎下载使用。

