2023年华东师大版数学八年级下册《数据的整理与初步处理》单元质量检测(含答案)
展开
这是一份2023年华东师大版数学八年级下册《数据的整理与初步处理》单元质量检测(含答案),共10页。
2023年华东师大版数学八年级下册《数据的整理与初步处理》单元质量检测一 、选择题1.若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是( ) A.44 B.45 C.46 D.47 2.已知一组数据1,7,10,8,a,6,0,3,若a=5,则a应等于( ) A.6 B.5 C.4 D.2 3.某区“引进人才”招聘考试分笔试和面试.其中笔试按60%、面试按40%计算加权平均数作为总成绩.吴老师笔试成绩为90分.面试成绩为85分,那么吴老师的总成绩为( )分.A.85 B.86 C.87 D.884.为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16 9 14 11 12 10 16 8 17 19,则这组数据的中位数和极差分别是( )A.13,16 B.14,11 C.12,11 D.13,115.一组数据共4个数,其平均数为5,极差是6,则下列满足条件的一组数据是( ). A.0,8,6,6 B.1,5,5,7 C.1,7,6,6 D.3,5,6,66.济南园博园对国庆黄金周七天假期的游客人数进行了统计,如表:日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日旅游人数万)1.52.22.23.81.52.20.6其中平均数和中位数分别是( )A.2和2.2 B.2和2 C.1.5和2.2 D.2.2和3.87.下表是某校合唱团成员的年龄分布: 年龄(岁)13141516频数515x10-x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.中位数、方差8.一组数据的方差为1.2,将这组数据扩大为原来的2倍,则所得新数据的方差为( )A.1.2 B.2.4 C.1.44 D.4.89.某村引进甲、乙两种水稻良种,各选6块条件相同的试验田,同时播种并核定亩产,结果甲、乙两种水稻的平均产量均为550 千克/亩,方差分别为s甲2=141.7,s乙2=433.3,则产量稳定、适合推广的品种为( )A.甲、乙均可 B.甲 C.乙 D.无法确定10.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐( )A.李飞或刘亮 B.李飞 C.刘亮 D.无法确定11.已知一组数据﹣2,﹣2,3,﹣2,﹣x,﹣1的平均数是﹣0.5,那么这组数据的众数与中位数分别是( )A.﹣2和3 B.﹣2和0.5 C.﹣2和﹣1 D.﹣2和﹣1.512.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2: 队员1队员2队员3队员4平均数(秒)51505150方差s2(秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( ) A.队员1 B.队员2 C.队员3 D.队员4二 、填空题13.某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:时间(时)4567人数1020155则这50名学生一周的平均课外阅读时间是________小时.14.一组数据﹣3,﹣1,0,3,10的极差是 .15.在射击比赛中,某运动员的6次射击成绩(单位:环)为7,8,10,8,9,6.计算这组数据的方差为________.16.已知某次测验的最高分、最低分、平均分、中位数、众数,同学甲要知道自己的成绩,属于班级中较高的一半还是较低的一半,应该利用上述数值中的 .17.已知一组从小到大排列的数据:1,x,y,2x,6,10的平均数与中位数都是5,则这组数据的众数是 .18.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85837875乙73808582如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为 ,乙的得分为 ,应该录取 .三 、解答题19.某班进行个人投篮比赛,受污染的下表记录了在规定时间内投进n个球的人数分布情况,同时,已知进球3个或3个以上的人平均每人投进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投进3个球和4个球的各有多少人?进球数n012345投进个球的人数127 2 20.两台机床同时生产一种零件,在10天中,两台机床每天的次品数如下:甲:1,0,2,0,2,3,0,4,1,2.乙:1,3,2,1,0,2,1,1,0,1.(1)哪台机床次品数的平均数较小?(2)哪台机床的生产状况比较稳定? 21.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围. 22.某酒店共有6名员工,所有员工的工资如下表所示:人 员经理会计厨师服务员1服务员2勤杂工月工资(元)600030004000200020001000(1)酒店所有员工的平均月工资是多少元?中位数、众数各是多少?
(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由.若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法. 23.某公司招聘人才,对应聘者分别进行阅读、思维和表达能力三项测试,其中甲、乙两人的成绩(单位:分)如下表:项目人员阅读思维表达能力甲938673乙958179根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的比例确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用? 24.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.质量(g)737475767778甲的数量244311乙的数量236211根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是 g;乙厂抽取质量的众数是 g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿? 25.某校为选拨参加2005年全国初中数学竞赛选手,进行了集体培训.在集训期间进行了10次测试,假设其中两位同学的测试成绩如下面的图表(如图3)所示: (1)根据图表中的信息填写下表:信息类别平均数众数中位数方差甲9395 18.8乙90 9068.8(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?(3)为了使参赛选手取得好成绩,应该选谁参加比赛?为什么?
答案1.C2.B3.D4.D5.C.6.A.7.B8.B.9.D10.B11.C.12.D13.答案为:5.3.14.答案为:13.15.答案为:.16.答案为:中位数17.答案为:6.17.答案为:81,79.3,甲19.解:设投进3个球的人数为a,投进4个球的人数为b,根据已知有=2.5,即 20.解:21.解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次).因为100.8>100,所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数,由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.22.解:(1)平均月工资=(6000+3000+4000+2000+2000+1000)÷6=3000(元),
众数为2000元,中位数2500元;
(2)∵能达到这个工资水平的只有3人,
∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是2000元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.23.解:∵x甲==85.5(分),x乙==84.8(分),∴x乙<x甲,∴甲将被录用.24.解:(1)75;75.(2)解:=(73×2+74×4+75×4+76×3+77+78)÷15=75,=≈1.87,∵=,>∴两家加工厂的鸡腿质量大致相等,但乙加工厂的鸡腿质量更稳定.因此快餐公司应该选购乙加工厂生产的鸡腿.25.解:(1)甲的中位数是94.5,乙的众数是99;(2)答案不惟一,如,甲的成绩比乙的成绩稳定等;(3)答案不惟一,如,应该选乙.因为乙的众数比甲的众数大,乙取得高分的可能性比甲高.若选甲,则理由为平均数高于乙,方差小,比乙稳定

