







《简单组合体的结构特征》人教版高中数学必修二PPT课件
展开
这是一份高中数学人教版新课标A必修2本册综合授课ppt课件,共24页。PPT课件主要包含了多面体,旋转体,复习导入,新知探究,类型三截面问题,课堂练习等内容,欢迎下载使用。
一、复习巩固,升华知识
上节课我们学习了柱、锥、台、球等简单几何体的结构特征
阅读教材P6—7。回答问题:(1)简单组合体的概念;(2)简单组合体有有几种基本构成形式.
1、简单组合体的概念及基本构成形式
该几何体是由两个圆柱和两个圆台拼接而成.
该几何体是由一个圆柱和一个球拼接而成.
由几种简单几何体拼接得到组合体.
该几何体是由一个长方体截去一个三棱锥而得到.
该几何体是由一个长方体挖去两个长方体而得到.
由几种简单几何体截去或挖去一部分得到组合体.
例1 请描述如图所示的组合体的结构特征.(导学案例1)
(1)由一个圆台和一个圆锥组合而成
(2)由一个正方体截去一个三棱锥得到
(3)由一个圆柱挖去一个三棱锥而成
类型一:组合体结构特征的识别
例2 如图所示的几何体是由哪个平面图形通过旋转得到的( )(导学案巩固训练1)
类型二:旋转体与简单组合体
例3 已知AB是直角梯形ABCD中与底边垂直的一腰,如图所示.分别以AB,BC,CD,DA所在的直线为轴旋转,试说明所得几何体的结构特征.
例4 下列图形是由右图的正方体切割而成. 指出切割方式并画图说明.
对于图(1),沿正方体的一条对角线作截面,切割即可得到图(1).
对于图(2),沿正方体的一条对角线作截面,切割即可得到图(2).
对于图(3),在正方体下底棱上取一点(如图),连结,切割,即得图(3).
对于图(4),用一个与正方体六条首尾相连的棱都相交的截面截割即得.
特别地,如图,取对应六条棱的中点可构成这样的截面,切割即得图(4)的特例.
1、说出下列组合体的结构特征
2、第一排中的图形绕虚线旋转一周,能形成第二排中的某个几何体,请把一、二排中相应的图形用线连起来.
3、一个正方体内接于一个球,过球心作一截面,如图所示,则截面的可能图形是( )
A.①③④ B.②③④ C.①②④ D.①②③
4、一个三棱锥的各棱长均相等,其内部有一个内切球,(即球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是( )(导学案当堂检测4)
A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点
5.如图,由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是( )(导学案当堂检测1)
6、连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.
解:依次连结正方体六个面的中心(如下图),观察知这是一个组合体,由两个完全相同的四棱锥共底面拼接而成,所有面都是正三角形,所有棱长都相等.
相关课件
这是一份高中数学人教A版 (2019)必修 第二册8.1 基本立体图形背景图ppt课件,共35页。PPT课件主要包含了矩形的一边所在直线,旋转轴,垂直于轴,平行于轴,平行于轴的边,圆柱和棱柱,圆柱O′O,圆锥的结构特征,直角三角形的斜边,不垂直于轴的边等内容,欢迎下载使用。
这是一份人教版新课标A1.3 空间几何体的表面积与体积说课ppt课件,共16页。PPT课件主要包含了问题提出,拼接截割,理论迁移等内容,欢迎下载使用。
这是一份人教版新课标A必修21.3 空间几何体的表面积与体积多媒体教学课件ppt,共60页。PPT课件主要包含了课前自主预习,思路方法技巧,名师辨误做答,课后强化作业,课堂基础巩固,答案D,答案C,答案B,答案②③④,答案A等内容,欢迎下载使用。
