所属成套资源:2021年人教版数学八年级下册第一次月考模拟试卷(含答案)
2021年人教版数学八年级下册第一次月考模拟试卷五(含答案)
展开
2021年人教版数学八年级下册第一次月考模拟试卷一、选择题1.下列各式一定是二次根式的是( )A. B. C. D.2.要使式子有意义,则m的取值范围是( )A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠13.下列各组数是勾股数的为( )A.3,4,5 B.,, C.11,13,15 D.4,5,64.下列二次根式中的最简二次根式是( )A. B. C. D.5.一直角三角形的两边长分别为3和4.则第三边的长为( )A.5 B. C. D.5或6.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于( )A.2cm B.3cm C.4cm D.5cm7.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是( )A.①② B.②③ C.①③ D.①②③8.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为( )A.(3,4)(2,4) B.(3,4)(2,4)(8,4)C.(2,4)(8,4) D.(3,4)(2,4)(8,4)(2.5,4)二、填空题9.当x= 时,二次根式取最小值,其最小值为 .10.方程=2的解是 .11.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为 .12.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC= cm.13.计算:(﹣2)2016(+2)2017= .14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是 .15.已知x=﹣1,则x2+2x+2015= .16.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是 .三.解答题17.计算(1)4+﹣+4 (2)(5﹣6+4)÷ (3)﹣(π﹣)0+|﹣2|﹣()2. 18.(6分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长. 19如图:A,B,C三点表示的数分别为a,b,c.利用图形化简:. 20.先化简,再求值:÷﹣,其中x=﹣1. 21.王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由. 22.如图,小烨用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为6cm,长BC为10cm.当小烨折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长? 23.如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,∠NPQ=30°,假使拖拉机行驶时周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是5米/秒,那么学校受到的影响的时间为多少秒? 24.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值. 25.如图(1),在平面直角坐标系中点A(x,y),B(2x,0)满足x2﹣2+3=0,点C为线段OB上一个动点,以AC为腰作等腰直角△ACD,且AC=AD.(1)求点A、B坐标及△AOB的面积;(2)试判断OC2、CB2、CD2间的数量关系,并说明理由;(3)如图(2),若点C为线段OB延长线上一个动点,则(2)中的结论是否成立,并说明理由.
参考答案与试题解析一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)1.下列各式一定是二次根式的是( )A. B. C. D.【解答】解:A、二次根式无意义,故A错误;B、是三次根式,故B错误;C、被开方数是正数,故C正确;D、当b=0或a、b异号时,根式无意义,故D错误.故选:C. 2.要使式子有意义,则m的取值范围是( )A.m>﹣1 B.m≥﹣1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:根据题意得:,解得:m≥﹣1且m≠1.故选:D. 3.下列各组数是勾股数的为( )A.3,4,5 B.,, C.11,13,15 D.4,5,6【解答】解:A、32+42=25=52,故是勾股数;B、,,不是整数,故不是勾股数;C、112+132=290≠152,故不是;D、42+52=41≠62,故不是;故选A. 4.下列二次根式中的最简二次根式是( )A. B. C. D.【解答】解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A 5.(3分)一直角三角形的两边长分别为3和4.则第三边的长为( )A.5 B. C. D.5或【解答】解:(1)当两边均为直角边时,由勾股定理得,第三边为5,(2)当4为斜边时,由勾股定理得,第三边为,故选:D. 6.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于( )A.2cm B.3cm C.4cm D.5cm【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B. 7.如果ab>0,a+b<0,那么下面各式:①=,②×=1,③÷=﹣b,其中正确的是( )A.①② B.②③ C.①③ D.①②③【解答】解:∵ab>0,a+b<0,∴a<0, b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1, •===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B. 8.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0 ),C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为( )A.(3,4)(2,4) B.(3,4)(2,4)(8,4)C.(2,4)(8,4) D.(3,4)(2,4)(8,4)(2.5,4)【解答】解:有两种情况:①以O为圆心,以5为半径画弧交BC于P点,此时OP=OD=5,在Rt△OPC中,OC=4,OP=5,由勾股定理得PC=3,则P的坐标是(3,4); ②以D为圆心,以5为半径画弧交BC于P′和P″点,此时DP′=DP″=OD=5,过P′作P′N⊥OA于N,在Rt△OP′N中,设CP′=x,则DN=5﹣x,P′N=4,OP=5,由勾股定理得:42+(5﹣x)2=52,x=2,则P′的坐标是(2,4);过P″作P″M⊥OA于M,设BP″=a,则DM=5﹣a,P″M=4,DP″=5,在Rt△DP″M中,由勾股定理得:(5﹣a)2+42=52,解得:a=2,∴BP″=2,CP″=10﹣2=8,即P″的坐标是(8,4);假设0P=PD,则由P点向0D边作垂线,交点为Q则有PQ2十QD2=PD2,∵0P=PD=5=0D,∴此时的△0PD为正三角形,于是PQ=4,QD=0D=2.5,PD=5,代入①式,等式不成立.所以排除此种可能.故选B. 二、填空题(共8小题,每小题3分,共24分)9.当x= ﹣1 时,二次根式取最小值,其最小值为 0 .【解答】解:根据二次根式有意义的条件,得x+1≥0,则x≥﹣1.所以当x=﹣1时,该二次根式有最小值,即为0.故答案为:﹣1,0. 10.方程=2的解是 x=2 .【解答】解:∵=2,∴3x﹣2=4,∴x=2,当x=2时,左边=,右边=2,∵左边=右边,∴方程=2的解是:x=2.故答案为:x=2. 11.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为 (4,0) .【解答】解:∵点A,B的坐标分别为(﹣6,0)、(0,8),∴AO=6,BO=8,∴AB==10,∵以点A为圆心,以AB长为半径画弧,∴AB=AC=10,∴OC=AC﹣AO=4,∵交x正半轴于点C,∴点C的坐标为(4,0),故答案为:(4,0). 12.△ABC中,AB=13cm,BC=10cm,BC边上的中线AD=12cm.则AC= 13 cm.【解答】解:∵D是BC的中点,BC=10cm,∴DC=BD=5cm,∵BD2+AD2=144+25=169,AB2=169,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°∴△ADC也是直角三角形,且AC是斜边∴AC2=AD2+DC2=AB2∴AC=13cm.故答案为:13. 13.计算:(﹣2)2016(+2)2017= +2 .【解答】解:原式=[(﹣2)(+2)]2016•(+2)=(3﹣4)2016•(+2)=+2.故答案为. 14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是 10 .【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1+S2=S3,于是S3=S1+S2,即S3=2+5+1+2=10.故答案是:10. 15.已知x=﹣1,则x2+2x+2015= 2107 .【解答】解:∵x=﹣1,∴x2+2x+2015=x2+2x+1+2014=(x+1)2+2014=2017,故答案为:2017. 16.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中BC边上的高是 .【解答】解:由题意知,小四边形分别为小正方形,所以B、C为EF、FD的中点,S△ABC=S正方形AEFD﹣S△AEB﹣S△BFC﹣S△CDA=,=.BC==.∴△ABC中BC边上的高是×2÷=.故答案为:. 三.解答题(本大题共9小题,满分共72分)17.(12分)计算(1)4+﹣+4(2)(5﹣6+4)÷(3)﹣(π﹣)0+|﹣2|﹣()2.【解答】解:(1)原式=4+3﹣2+4=7+2; (2)原式=(5×4﹣6×3+4)÷=(2+4)÷=2+4; (3)﹣(π﹣)0+|﹣2|﹣()2=2+﹣1+2﹣﹣5=﹣2. 18.(6分)如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长.(2)求AB的长.【解答】解:(1)∵CD⊥AB于D,且BC=15,BD=9,AC=20∴∠CDA=∠CDB=90°在Rt△CDB中,CD2+BD2=CB2,∴CD2+92=152∴CD=12; (2)在Rt△CDA中,CD2+AD2=AC2∴122+AD2=202∴AD=16,∴AB=AD+BD=16+9=25. 19.(6分)如图:A,B,C三点表示的数分别为a,b,c.利用图形化简:.【解答】解:=﹣(a﹣b)+(c﹣b)+(a﹣c)=﹣a+b+c﹣b+a﹣c=0. 20.(6分)先化简,再求值:÷﹣,其中x=﹣1.【解答】解:原式=•﹣=﹣=,当x=﹣1时,原式==﹣1. 21.(8分)王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长;(2)问第一条边长可以为7米吗?请说明理由,并求出a的取值范围;(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,说明理由.【解答】解:(1)∵第二条边长为2a+2,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a. (2)当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7米,根据题意得:,解得:<a<.则a的取值范围是:<a<. (3)在(2)的条件下,注意到a为整数,所以a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈是直角三角形形状,它们的三边长分别为5米,12米,13米. 22.(8分)如图,小烨用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为6cm,长BC为10cm.当小烨折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?【解答】解:∵四边形ABCD是矩形,∴AB=CD=6cm,AD=CB=10cm.由折叠方法可知:AD=AF=10cm,DE=EF,设EC=xcm,则EF=ED=(6﹣x)cm,AF=AD=10cm,在Rt△ABF中,由勾股定理可知:BF==8(cm),则CF=BC﹣BF=10﹣8=2(cm).在Rt△CEF中,由勾股定理可知:CF2+CE2=EF2,即22+x2=(6﹣x)2,解得x=,即EC=cm. 23.(8分)如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,∠NPQ=30°,假使拖拉机行驶时周围100米以内会受到噪音影响,那么拖拉机在公路MN上沿PN方向行驶时学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是5米/秒,那么学校受到的影响的时间为多少秒?【解答】解:作AH⊥MN于H,如图,在Rt△APH中,∵∠HPA=30°,∴AH=AP=×160°=80,而80<100,∴拖拉机在公路MN上沿PN方向行驶时学校会受到影响;以A为圆心,100为半径画弧交MN于B、C,如图,则AB=AC=100,而AH⊥BC,∴BH=CH,在Rt△ABH中,BH==60,∴BC=2BH=120,∴学校受到的影响的时间==24(秒). 24.(8分)如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE的值最小?(3)根据(2)中的规律和结论,请构图求出代数式+的最小值.【解答】解:(1)AC+CE=+; (2)当A、C、E三点共线时,AC+CE的值最小; (3)如右图所示,作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,设BC=x,则AE的长即为代数+的最小值.过点A作AF∥BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,所以AE===13,即+的最小值为13.故代数式+的最小值为13. 25.(10分)如图(1),在平面直角坐标系中点A(x,y),B(2x,0)满足x2﹣2+3=0,点C为线段OB上一个动点,以AC为腰作等腰直角△ACD,且AC=AD.(1)求点A、B坐标及△AOB的面积;(2)试判断OC2、CB2、CD2间的数量关系,并说明理由;(3)如图(2),若点C为线段OB延长线上一个动点,则(2)中的结论是否成立,并说明理由.【解答】解:(1)∵x2﹣2+3=0,∴(x﹣)2+=0,∵∴(x﹣)2≥0,≥0,∴x=y=.∴A(),B(,0),S△AOB=×2×=3;(2)结论:CD2=OC2+BC2.理由:连接BD,∵OA=AB=,OB=2,∴OA2+OB2=OB2,∴∠OAB=90°,∠AOB=∠ABO=45°,∵∠OAB=∠CAD,∴∠OAC=∠BAD,∵∠AO=AB,AC=AD,∴△OAC≌△BAD,∴OC=BD,∠AOC=∠ABD=45°,∴∠CBD=90°,∴CD2=BC2+BD2.∴CD2=OC2+BC2.(3)(2)中的结论仍然成立理由:连接BD,∵∠OAB=90°,∠AOB=∠ABO=45°,∵∠OAB=∠CAD,∴∠OAC=∠BAD,∵AO=AB,AC=AD,∴△OAC≌△BAD,∴OC=BD,∠AOC=∠ABD=45°,∴∠OBD=∠DBC=90°,∴CD2=BC2+BD2,∴CD2=OC2+BC2.

