终身会员
搜索
    上传资料 赚现金
    2020年高中数学新教材同步必修第二册 章末检测试卷四(第9章)
    立即下载
    加入资料篮
    2020年高中数学新教材同步必修第二册  章末检测试卷四(第9章)01
    2020年高中数学新教材同步必修第二册  章末检测试卷四(第9章)02
    2020年高中数学新教材同步必修第二册  章末检测试卷四(第9章)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年高中数学新教材同步必修第二册 章末检测试卷四(第9章)

    展开
    章末检测试卷四(第九章)
    (时间:120分钟 满分:150分)
    一、选择题(本大题共13小题,每小题4分,共52分. 在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错的不得分)
    1.为了了解所加工的一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是(  )
    A.总体 B.个体
    C.总体的一个样本 D.样本容量
    答案 C
    解析 总体是这批零件的长度,个体是这批零件中每个零件的长度,抽取的200个零件的长度是样本,样本容量是200.
    2.①一次数学考试中,某班有10人的成绩在100分以上,32人的成绩在90~100分,12人的成绩低于90分,现从中抽取9人了解有关情况;②运动会的工作人员为参加4×100 m接力赛的6支队伍安排跑道.针对这两件事,恰当的抽样方法分别为(  )
    A.分层随机抽样,简单随机抽样
    B.简单随机抽样,简单随机抽样
    C.简单随机抽样,分层随机抽样
    D.分层随机抽样,分层随机抽样
    答案 A
    解析 ①中,考试成绩在不同分数段之间的同学有明显的差异,用分层随机抽样比较恰当;②中,总体包含的个体较少,用简单随机抽样比较恰当.
    3.观察新生儿的体重,其频率分布直方图如图所示,则新生儿体重在[2 700,3 000)的频率为(  )

    A.0.001 B.0.1
    C.0.2 D.0.3
    答案 D
    解析 由直方图的意义可知,在区间[2 700,3 000)内取值的频率为(3 000-2 700)×0.001=0.3.
    4.某校高二年级有50人参加2019“希望杯”数学竞赛,他们竞赛的成绩制成了如下的频率分布表,根据该表估计该校学生数学竞赛成绩的平均分为(  )
    分组
    [60,70)
    [70,80)
    [80,90)
    [90,100]
    频率
    0.2
    0.4
    0.3
    0.1

    A.70 B.73 C.78 D.81.5
    答案 C
    解析 估计该校学生数学竞赛成绩的平均分=65×0.2+75×0.4+85×0.3+95×0.1=78,故选C.
    5.我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣(  )
    A.104人 B.108人
    C.112人 D.120人
    答案 B
    解析 由题意可知,这是一个分层随机抽样的问题,其中北乡可抽取的人数为300×=300×=108,故选B.
    6.如图是某班50名学生期中考试数学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则图中x的值等于(  )

    A.0.120 B.0.180
    C.0.012 D.0.018
    答案 D
    解析 由图可知纵坐标表示.
    故x=0.1-0.054-0.010-0.006-0.006-0.006
    =0.018.



    7.某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其平均数和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的平均数和方差分别为(  )
    A.,s2+1002 B.+100,s2+1002
    C.,s2 D.+100,s2
    答案 D
    解析 方法一 因为每个数据都加上100,故平均数也增加100,而离散程度应保持不变.
    方法二 由题意知x1+x2+…+x10=10,s2=[(x1-)2+(x2-)2+…+(x10-)2],
    则所求平均数=[(x1+100)+(x2+100)+…+(x10+100)]=(10+10×100)=+100.
    而所求方差t2=[(x1+100-)2+(x2+100-)2+…+(x10+100-)2]=[(x1-)2+(x2-)2+…+(x10-)2]=s2.
    8.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示 ,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为(  )

    A.4∶3∶1 B.5∶3∶1
    C.5∶3∶2 D.3∶2∶1
    答案 B
    解析 体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.30,体重在[55,60]内的频率为0.02×5=0.1,
    ∵0.5∶0.3∶0.1=5∶3∶1,
    ∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.
    9.气象意义上从春季进入夏季的标志为“连续5天的日平均温度均不低于22 ℃”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数).
    ①甲地:5个数据的中位数为24,众数为22;
    ②乙地:5个数据的中位数为27,平均数为24;
    ③丙地:5个数据中有一个数据是32,平均数为26,方差为10.8.
    则肯定进入夏季的地区有(  )
    A.0个 B.1个
    C.2个 D.3个
    答案 C
    解析 甲地肯定进入,因为众数为22,所以22至少出现两次,若有一天低于22 ℃,则中位数不可能为24;丙地肯定进入,令x为其中某天的日平均温度,则10.8×5-(32-26)2=18>(x-26)2,若x≤21,上式显然不成立;乙地不一定进入,如13,23,27,28,29.故选C.
    10.甲、乙两支女子曲棍球队在去年的国际冠军杯中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为(  )
    ①甲队的技术比乙队好;
    ②乙队发挥比甲队稳定;
    ③乙队几乎每场都进球;
    ④甲队的表现时好时坏.
    A.1 B.2 C.3 D.4
    答案 D
    解析 因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,②也正确;乙队平均每场进球数为1.8,且乙队全年进球数的标准差较小,所以乙队几乎每场都进球,③正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,④正确.
    11.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

    根据该折线图,下列结论正确的是(  )
    A.月接待游客量逐月增加
    B.年接待游客量逐年增加
    C.各年的月接待游客量高峰期大致在7,8月
    D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳
    答案 BCD
    解析 对于选项A,由图易知,月接待游客量每年7,8月份明显高于12月份,故A错;
    对于选项B,观察折线图的变化趋势可知,年接待游客量逐年增加,故B正确;
    对于选项C,D,由图可知显然正确.
    12.某学校为了调查学生在一周生活方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的学生有60人,则下列说法正确的是 (  )

    A.样本中支出在[50,60)元的频率为0.03
    B.样本中支出不少于40元的人数有132
    C.n的值为200
    D.若该校有2 000名学生,则一定有600人支出在[50,60)元
    答案 BC
    解析 由频率分布直方图得,
    在A中,样本中支出在[50,60)元的频率为1-(0.01+0.024+0.036)×10=0.3,故A错误;
    在B中,样本中支出不少于40元的人数有×0.36+60=132,故B正确;
    在C中,n==200,故n的值为200,故C正确;
    D.若该校有2 000名学生,则可能有600人支出在[50,60)元,故D错误.
    13.某赛季甲、乙两名篮球运动员各6场比赛得分情况记录如下,
    甲:18,20,35,33,47,41;
    乙:17,26,19,27,19,29.
    则下列四个结论中,正确的是(  )
    A.甲运动员得分的极差大于乙运动员得分的极差
    B.甲运动员得分的中位数大于乙运动员得分的中位数
    C.甲运动员得分的平均值大于乙运动员得分的平均值
    D.甲运动员的成绩比乙运动员的成绩稳定
    答案 ABC
    解析 对于A,甲运动员得分的极差为47-18=29,乙运动员得分的极差为29-17=12,甲运动员得分的极差大于乙运动员得分的极差,因此A正确;
    对于B,甲的数据从小到大排列后,处于中间的数是33,35,所以甲运动员得分的中位数是34,同理求得乙数据的中位数是22.5,因此甲运动员得分的中位数大于乙运动员得分的中位数,故B正确;
    对于C,甲运动员得分的平均值约为=32.33,乙运动员得分的平均值为=22.83,因此甲运动员得分的平均值大于乙运动员得分的平均值,故C正确;
    对于D,分别计算甲、乙两个运动员得分的方差,方差小的成绩更稳定.可以算出甲的方差为S≈109.22,同理,得出乙的方差为S≈21.47,因为乙的方差小于甲的方差,所以乙运动员的成绩比甲运动员的成绩稳定,故D不正确.
    二、填空题(本大题共4小题,每小题4分,共16分)
    14.数据3.2,3.6,4.5,2.4,4.6,6.4,7.8,7.9,8.0,8.1,8.4,8.6的50%分位数是________,75%分位数是________.
    答案 7.1 8.05
    解析 把这组数据从小到大排列得2.4,3.2,3.6,4.5,4.6,6.4,7.8,7.9,8.0,8.1,8.4,8.6,
    因为12×50%=6,12×75%=9,
    所以这组数据的50%分位数是=7.1,
    75%分位数是=8.05.
    15.某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人):

    篮球组
    书画组
    乐器组
    高一
    45
    30
    a
    高二
    15
    10
    20

    学校要对这三个小组的活动效果进行抽样调查,按小组分层随机抽样,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a的值为________.
    答案 30
    解析 由题意,得=,
    解得a=30.
    16.如图所示是一次考试结果的频率分布直方图,则据此估计这次考试的平均分为________分.

    答案 75
    解析 利用组中值估算平均分,则有=55×0.1+65×0.2+75×0.4+85×0.2+95×0.1=75,故估计这次考试的平均分为75分.
    17.学校开展“书香校园”活动以来,受到同学们的广泛关注.学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.

    若该组数的平均数、众数、中位数依次为a,b,c,则a,b,c的大小关系为________.
    答案 a 解析 依题意有
    次数
    0次
    1次
    2次
    3次
    4次
    人数
    7人
    13人
    17人
    10人
    3人

    所以共统计了50人,众数为2,中位数为2,
    平均数为=<2,
    ∴a 三、解答题(本大题共6小题,共82分)
    18.(12分)某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,干事20人,上级机关为了了解机关人员对政府机构改革的意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取?
    解 用分层随机抽样抽取.
    ①∵20∶100=1∶5,
    ∴=2,=14,=4.
    即从副处级以上干部中抽取2人,一般干部中抽取14人,干事中抽取4人.
    ②因副处级以上干部与干事人数都较少,他们分别按1~10编号和1~20编号,然后采用抽签法分别抽取2人和4人,对一般干部采用00,01,…,69编号,然后用随机数法抽取14人.
    19.(12分)某公司共有员工120人,用简单随机抽样任意抽取12人,得到这12人的月工资(单位:千元)如下:
    7.5,6.8,8.6,6.2,7.8,8.9,7.8,8.0,8.5,8.2,7.2,8.0试估计该公司员工工资的25%,50%,90%分位数.
    解 将所有数据从小到大排列,得
    6.2,6.8,7.2,7.5,7.8,7.8,8.0,8.0,8.2,8.5,8.6,8.9,
    因为有12个数据,
    所以12×25%=3,12×50%=6,12×90%=10.8.
    所以25%分位数为=7.35,
    50%分位数为=7.9,
    90%分位数为8.6.
    所以估计该公司员工工资的25%,50%,90%分位数分别为7.35,7.9,8.6.
    20.(14分)为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟跳绳次数的测试,将数据整理后,画出频率分布直方图(如图所示).已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,且第一小组的频数为5.

    (1)求第四小组的频率;
    (2)求参加这次测试的学生的人数;
    (3)若一分钟跳绳次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率.
    解 (1)第四小组的频率为1-0.1-0.3-0.4=0.2.
    (2)设参加这次测试的学生有x人,则0.1x=5,
    ∴x=50,故参加这次测试的学生有50人.
    (3)由题意,样本的达标率约为0.3+0.4+0.2=0.9,
    ∴该年级学生跳绳测试的达标率为90%.
    21.(14分)甲、乙两位同学进行投篮比赛,每人玩5局,每局在指定线外投篮,若第一次不进,再投第二次,依此类推,但最多只能投6次.当投进时,该局结束,并记下投篮的次数.当6次投不进,该局也结束,记为“×”.第一次投进得6分,第二次投进得5分,第三次投进得4分,依此类推,第6次投不进,得0分.两人的投篮情况如下:

    第1局
    第2局
    第3局
    第4局
    第5局

    5次
    ×
    4次
    5次
    1次

    ×
    2次
    4次
    2次
    ×

    请通过计算,判断哪位同学投篮的水平高.
    解 依题意,甲、乙的得分情况如下表:

    第1局
    第2局
    第3局
    第4局
    第5局

    2
    0
    3
    2
    6

    0
    5
    3
    5
    0

    甲=×(2+0+3+2+6)=2.6,
    s甲=
    ≈1.96,
    乙=×(0+5+3+5+0)=2.6,
    s乙=
    ≈2.24,
    因为甲得分的平均数为2.6,乙得分的平均数为2.6,甲得分的标准差约为1.96,乙得分的标准差约为2.24,
    所以甲得分的平均数与乙得分的平均数相等.
    甲得分的标准差小于乙得分的标准差,甲投篮得分比乙稳定,故甲投篮的水平高.
    22.(15分)已知一组数据:
    125 121 123 125 127 129 125 128 130 129
    126 124 125 127 126 122 124 125 126 128
    (1)填写下面的频率分布表:
    分组
    频数
    频率
    [121,123)


    [123,125)


    [125,127)


    [127,129)


    [129,131]


    合计



    (2)作出频率分布直方图;
    (3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.
    解 (1)频率分布表如下:
    分组
    频数
    频率
    [121,123)
    2
    0.10
    [123,125)
    3
    0.15
    [125,127)
    8
    0.40
    [127,129)
    4
    0.20
    [129,131]
    3
    0.15
    合计
    20
    1.00
    (2)频率分布直方图如下:

    (3)在[125,127)中的数据最多,取这个区间的中点值作为众数的近似值,得众数126,事实上,众数的精确值为125.图中虚线对应的数据是125+2×=126.25,
    事实上中位数为125.5.使用“组中值”求平均数:
    =122×0.1+124×0.15+126×0.4+128×0.2+130×0.15=126.3,
    平均数的精确值为=125.75.
    23.(15分)某初级中学共有学生2 000名,各年级男、女生人数如下表:

    初一年级
    初二年级
    初三年级
    女生
    373
    x
    y
    男生
    377
    370
    z

    已知在全校学生中随机抽取1名,抽到初二年级女生的频率是0.19.
    (1)求x的值;
    (2)现用分层随机抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
    (3)在(2)中,若所抽取的初一年级、初二年级、初三年级三个年级学生的体重的平均数分别是40 kg,50 kg,60 kg,方差分别是1,2,3,估计该校所有学生体重的平均数和方差.
    解 (1)∵=0.19,∴x=380.
    (2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层随机抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为×500=12.
    (3)初一年级应抽取学生的人数为×750=18,
    初二年级应抽取学生的人数为×750=18,
    所以该校所有学生体重的平均数约为=×40+×50+×60=48.75(kg),
    该校所有学生体重的方差约为
    s2=×[1+(40-48.75)2]+×[2+(50-48.75)2]+×[3+(60-48.75)2]
    =62.812 5.
    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2020年高中数学新教材同步必修第二册 章末检测试卷四(第9章)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map