2019-2020学年中考数学专题练习:方程及应用
展开中考数学方程课时练2
一、单选题
1.关于的一元二次方程的根的情况是( )
A. 有两不相等实数根 B. 有两相等实数根
C. 无实数根 D. 不能确定
2.已知关于的一元二次方程有两个不相等的实数根,若,则的值是( )
A. 2 B. -1 C. 2或-1 D. 不存在
3.若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )
A. B. 1 C. D.
4.分式方程的解为( )
A. B. C. D. 无解
5.若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数 的和为( )
A. B. C. 1 D. 2
二、填空题
6.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.
7.若是方程的一个根,则的值为__________.
8.设、是一元二次方程的两个根,且,则__________,__________.
9.甲、乙两个机器人检测零件,甲比乙每小时多检测20个,甲检测300个比乙检测200个所用的时间少,若设甲每小时检测个,则根据题意,可列出方程:__________.
三、解答题
10.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有两种型号的挖掘机,已知3台型和5台型挖掘机同时施工一小时挖土165立方米;4台型和7台型挖掘机同时施工一小时挖土225立方米.每台型挖掘机一小时的施工费用为300元,每台型挖掘机一小时的施工费用为180元.
(1)分别求每台型, 型挖掘机一小时挖土多少立方米?
(2)若不同数量的型和型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?
11.用消元法解方程组时,两位同学的解法如下:
(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.
(2)请选择一种你喜欢的方法,完成解答.
12.某地年为做好“精准扶贫”,投入资金万元用于异地安置,并规划投入资金逐年增加,年在年的基础上增加投入资金万元.
(1)从年到年,该地投入异地安置资金的年平均增长率为多少?
(2)在年异地安置的具体实施中,该地计划投入资金不低于万元用于优先搬迁租房奖励,规定前户(含第户)每户每天奖励元,户以后每户每天奖励元,按租房天计算,求年该地至少有多少户享受到优先搬迁租房奖励.
13.(1)计算:.
(2)解方程:.
14.我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.
15.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)
答案提示
1.【答案】A
【解析】【分析】根据一元二次方程的根的判别式进行判断即可.
【详解】,
△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,
∵(k+1)2≥0,
∴(k+1)2+8>0,
即△>0,
∴方程有两个不相等实数根,故选A.
【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.
2.【答案】A
3.【答案】A
【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.
【详解】x(x+1)+ax=0,
x2+(a+1)x=0,
由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,
解得:a1=a2=-1,
故选A.
【点睛】本题考查一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
4.【答案】D
5.【答案】C
6.【答案】16
【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.
详解:解方程x2-10x+21=0得x1=3、x2=7,
∵3<第三边的边长<9,
∴第三边的边长为7.
∴这个三角形的周长是3+6+7=16.
故答案为:16.
点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.7.【答案】2018
【解析】分析:根据一元二次方程的解的定义即可求出答案.
详解:由题意可知:2m2-3m-1=0,
∴2m2-3m=1
∴原式=3(2m2-3m)+2015=2018
故答案为:2018
点睛:本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.
8.【答案】 ,
9.【答案】
【解析】【分析】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据甲检测300个比乙检测200个所用的时间少,列出方程即可.
【解答】若设甲每小时检测个,检测时间为,乙每小时检测个,检测时间为,根据题意有:
.
故答案为:
【点评】考查分式方程的应用,解题的关键是找出题目中的等量关系.
10.【答案】(1)每台型挖掘机一小时挖土30立方米,每台型挖据机一小时挖土15立方米;
(2)共有三种调配方案.方案一: 型挖据机7台,型挖掘机5台;方案二: 型挖掘机8台,型挖掘机4台;方案三: 型挖掘机9台,型挖掘机3台.当A型挖掘机7台, 型挖掘机5台的施工费用最低,最低费用为12000元.
11.【答案】(1)解法一中的计算有误;(2)原方程组的解是.
【解析】【分析】根据加减消元法和代入消元法进行判断即可.
【解答】(1)解法一中的计算有误(标记略).
(2)用消元法解方程组时,两位同学的解法如下:
由①-②,得,解得,
把代入①,得,解得,
所以原方程组的解是.
【点评】考查加减消元法和代入消元法解二元一次方程组,熟练掌握两种方法是解题的关键.
12.【答案】(1)从年到年,该地投入异地安置资金的年平均增长率为;(2)年该地至少有户享受到优先搬迁租房奖励.
【解析】分析:(1)设年平均增长率为x,根据:2015年投入资金给×(1+增长率)2=2017年投入资金,列出方程求解可得;
(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.
详解:(1)设该地投入异地安置资金的年平均增长率为,根据题意得
,
解得:或(舍),
答:从年到年,该地投入异地安置资金的年平均增长率为;
(2)设年该地有户享受到优先搬迁租房奖励,根据题意得,
∵,∴,
,
解得:.
答:年该地至少有户享受到优先搬迁租房奖励.
点睛:本题主要考查一元二次方程与一元一次不等式的应用,由题意准确抓住相等关系并据此列出方程或不等式是解题的关键.
13.【答案】(1)2;(2),.
14.【答案】每月实际生产智能手机30万部.
【解析】分析:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据工作时间=工作总量÷工作效率结合提前5个月完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.
详解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,
根据题意得:,
解得:x=20,
经检验,x=20是原方程的解,且符合题意,
∴(1+50%)x=30.
答:每月实际生产智能手机30万部.
点睛:本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
15.【答案】(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.

