孝感市重点中学2024年数学九上开学统考试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.B.C.D.
2、(4分)某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么求时所列方程正确的是( )
A.B.
C.D.
3、(4分)如图,△ABC中,AB=6,AC=4,AD是∠BAC的外角平分线,CD⊥AD于D,且点E是BC的中点,则DE为( )
A.8.5B.8C.7.5D.5
4、(4分)如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx的解集为( )
A.x>2B.x<2C.x>-4D.x<-4
5、(4分)如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=115°,则∠BCE=( )
A.25°B.30°C.35°D.55°
6、(4分)在矩形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )
A.2和3B.3和2C.4和1D.1和4
7、(4分)使分式有意义的x的取值范围是( )
A.x≥1B.x≤1C.x≠1D.x>1
8、(4分)如图,第一个正方形的顶点A1(﹣1,1),B1(1,1);第二个正方形的顶点A2(﹣3,3),B2(3,3);第三个正方形的顶点A3(﹣6,6),B3(6,6)按顺序取点A1,B2,A3,B4,A5,B6…,则第12个点应取点B12,其坐标为( )
A.(12,12)B.(78,78)C.(66,66)D.(55,55)
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,在平面直角坐标系xOy中,直线,分别是函数和的图象,则可以估计关于x的不等式的解集为_____________.
10、(4分)函数自变量的取值范围是_________.
11、(4分)一次函数y=kx+b(k,b是常数,k≠0)图象如图所示,则不等式kx+b>0的解集是_____.
12、(4分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为 .
13、(4分)已知直线y=2x﹣5经过点A(a,1﹣a),则A点落在第_____象限.
三、解答题(本大题共5个小题,共48分)
14、(12分)某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)甲、乙两施工队每天分别能完成绿化的面积是多少?
(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;
(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?
15、(8分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,某家快递公司每月的投递总件数的增长率相同,今年三月份与五月份完成投递的快递总件数分别为30万件和36.3万件,求该快递公司投递快递总件数的月平均增长率.
16、(8分)计算:
(1)-|5-|+; (2)-(2+)2
17、(10分)如图,利用一面墙(墙的长度不限),用20m长的篱笆围成一个面积为50m2矩形场地,求矩形的宽BC.
18、(10分)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同时分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的关系如图.
(1)求y关于x的表达式;
(2)已知乙车以60千米/时的速度匀速行驶,设行驶过程中,两车相距的路程为s(千米).请直接写出s关于x的表达式;
(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为a(千米/时)并保持匀速行驶,结果比甲车晚20分钟到达终点,求乙车变化后的速度a.在下图中画出乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)若,是一元二次方程的两个根,则______.
20、(4分)已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.
21、(4分)如图,线段两个点的坐标分别为,,以原点为位似中心,将线段缩小得到线段,若点的坐标为,则点的坐标为______.
22、(4分)若n边形的每个内角都是,则________.
23、(4分)如图,在矩形中,分别是边和的中点,,则的长为__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,图1、图2是两张大小完全相同的6×6方格纸,每个小方格的顶点叫做格点,以格点为顶点的多边形叫做格点多边形.网格中有一个边长为2的格点正方形,按下列要求画出拼图后的格点平行四边形(用阴影表示)
(1)把图1中的格点正方形分割成两部分,再通过图形变换拼成一个平行四边形,在图1中画出这个格点平行四边形;
(2)把图2中的格点正方形分割成三部分,再通过图形变换拼成一个平行四边形,在图2中画出这个格点平行四边形.
25、(10分)八年级下册教材第69页习题14:四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证:AE=EF.这道题对大多数同学来说,印象深刻数学课代表在做完这题后,她把这题稍作改动,如图,四边形ABCD是正方形,点E是边BC的三等分点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,那么AE=EF还成立吗?如果成立,给予证明,如果不成立,请说明理由.
26、(12分)已知一次函数的图象经过(﹣4,15),(6,﹣5)两点,如果这条直线经过点P(m,2),求m的值.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.
【详解】
A、不是同类二次根式,不能合并,故本选项错误;
B、不能合并,故本选项错误;
C、故本选项正确;
D、故本选项错误;
故选:C.
本题考查了二次根式的运算,掌握运算法则是解题的关键.
2、C
【解析】
本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.
【详解】
解:原计划用时为:,实际用时为:.
所列方程为:,
故选C.
本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
3、D
【解析】
延长BA、CD交于F,根据等腰三角形的判定定理和性质定理得到AF=AC,CD=DF,根据三角形中位线定理得到答案.
【详解】
延长BA、CD交于F,
∵AD是∠BAC的外角平分线,CD⊥AD,
∴AF=AC,CD=DF,
∴BF=BA+AF=BA+AC=10,
∵CD=DF,点E是BC的中点,
∴ED= BF=5,
故选:D.
此题考查三角形中位线定理,等腰三角形的判定与性质,解题关键在于作辅助线
4、B
【解析】
从图象确定kx+b>mx时,x的取值范围即可.
【详解】
解:从图象可以看出,当x<2时,kx+b>mx,
故选:B.
本题考查了一次函数与一元一次不等式,体现了数形结合的思想方法,准确的确定出x的值,是解答本题的关键.
5、A
【解析】
由AD∥BC得到∠B=180°-∠A,而∠A=115°,由此可以求出∠B,又CE⊥AB,所以在三角形BCE中利用三角形内角和即可求出∠BCE.
【详解】
解:∵AD∥BC,
∴∠B=180°-∠A=65°,
又CE⊥AB,
∴∠BCE=90°-65°=25°.
故选:A.
此题主要考查平行四边形的性质和直角三角形的性质.
6、B
【解析】
先根据角平分线及矩形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.
【详解】
∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是矩形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC﹣BE=5﹣3=2,
故选:B.
本题主要考查角平分线的定义和等腰三角形的判定定理,掌握“双平等腰”模型,是解题的关键.
7、C
【解析】
分式的分母不为零,即x-1≠1.
【详解】
解:当分母x-1≠1,即x≠1时,分式有意义;
故选:C.
从以下三个方面透彻理解分式的概念:
(1)分式无意义⇔分母为零;
(2)分式有意义⇔分母不为零;
(3)分式值为零⇔分子为零且分母不为零.
8、B
【解析】
根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“An(-, ),Bn(,)(n为正整数)”,再根据该规律解决问题.
【详解】
解:观察,发现规律:A1(-1,1),B1(1,1),A2(-3,3),B2(3,3),A3(-6,6),B3(6,6),B4(10,10),A5(-15,15),…,∴An(-, ),Bn(,)(n为正整数).∴B12(,),即(78,78).
故选B
本题考查了规律型中的点的坐标,解题的关键是找出规律“An(-, ),Bn(,)(n为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、x <-2
【解析】
【分析】根据函数的图象进行分析,当l1的图象在l2的上方时,x的取值范围就是不等式的解集.
【详解】由函数图象可知,当x<-2时,l1的图象在l2的上方.
所以,的解集为x<-2.
故答案为x<-2
【点睛】本题考核知识点:一次函数与不等式.解题关键点:从函数图象分析函数值的大小.
10、
【解析】
根据分式有意义的条件求自变量的取值范围即可.
【详解】
解:由题意可知:x+2018≠0
解得x≠-2018
故答案为:.
本题考查求自变量的取值范围,掌握分式成立的条件分母不能为零是本题的解题关键.
11、x>-2
【解析】
试题解析:根据图象可知:当x>-2时,一次函数y=kx+b的图象在x轴的上方.即kx+b>0.
考点:一次函数与一元一次不等式.
12、7
【解析】
试题分析:如图,过点A做BC边上高,所以EP AM,所以∆BFP~∆BAM,∆CAM~CEP,因为AF=2,BF=3,AB=AC=5,所以, BM=CM,所以 ,因此CE=7
13、四.
【解析】
把点A(a,1-a)代入直线y=2x-5求出a的值,进而可求出A点的坐标,再根据各象限内点的坐标特点判断出A点所在的象限即可.
【详解】
把点A(a,1−a)代入直线y=2x−5得,2a−5=1−a,解得a=2,
故A点坐标为(2,−1),
由A点的坐标可知,A点落在第四象限.
故答案为:四.
本题考查了一次函数图象上点的坐标特征,牢牢掌握一次函数图像上的坐标特征是解答本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)甲、乙两施工队每天分别能完成绿化的面积是100 m2、50 m2;
(2)y=24-2x;
(3)当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,
当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a
【解析】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意列出分式方程即可求解;
(2)根据总社区计划对面积为1200m2,即可列出函数关系式;
(3)先根据工期不得超过14天,求出x的取值,再根据列出总费用w的函数关系式,即可求解.
【详解】
(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意,解得x=50,
经检验,x=50是方程的解,
故甲、乙两施工队每天分别能完成绿化的面积是100 m2、50 m2;
(2)依题意得100x+50y=1200,
化简得y=24-2x,
故求y与x的函数解析式为y=24-2x;
(3)∵工期不得超过14天,
∴x+y≤14,0≤x≤14,0≤y≤14
即x+24-2x≤14,解得x≥10,
∴x的取值为10≤x≤12;
设总施工费用为w,则当x=10时,w=(1600+a)×10+(700+a)×4=18800+14a,
当x=11时,w=(1600+a)×11+(700+a)×2=19000+12a
当x=12时,w=(1600+a)×12=19200+12a,
∵100≤a≤300,经过计算得
当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,
当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a
此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系进行求解.
15、投递快递总件数的月平均增长率是10%.
【解析】
设投递快递总件数的月平均增长率是x,依题意得:30(1+x)2=36.3,解方程可得.
【详解】
解:设投递快递总件数的月平均增长率是x,
依题意,得:30(1+x)2=36.3
则1+x=±1.1
解得:x1=0.1=10%,x2=−2.1(舍),
答:投递快递总件数的月平均增长率是10%.
考核知识点:一元二次方程的应用.理解增长率是关键.
16、(1)13+4;(2)-1.
【解析】
(1)先把二次根式化简,然后去绝对值后合并即可;
(2)利用分母有理化和完全平方公式计算.
【详解】
解:(1)原式=3-(5-)+18
=3-5++18
=13+4;
(2)原式=4-(4+4+3)
=4-1-4
=-1.
故答案为:(1)13+4;(2)-1.
本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
17、5m
【解析】
设矩形的宽BC=xm.根据面积列出方程求解可得.
【详解】
解:设矩形的宽BC=xm.则AB=(20-2x)m,
根据题意得: x(20-2x)=50,
解得:,
答:矩形的宽为5m.
此题考查了一元二次方程的应用,列方程时要找到题目中的等量关系,所求得的解要符合实际情况.
18、(1)y=-90x+1;(2)s=1-150x;(3)a=108(千米/时),作图见解析.
【解析】
(1)由图知y是x的一次函数,设y=kx+b.把图象经过的坐标代入求出k与b的值.
(2)根据路程与速度的关系列出方程可解.
(3)如图:当s=0时,x=2,即甲乙两车经过2小时相遇.再由1得出y=-90x+1.设y=0时,求出x的值可知乙车到达终点所用的时间.
【详解】
(1)由图知y是x的一次函数,设y=kx+b
∵图象经过点(0,1),(2,120),
∴
解得
∴y=-90x+1.
即y关于x的表达式为y=-90x+1.
(2)由(1)得:甲车的速度为90千米/时,甲乙相距1千米.
∴甲乙相遇用时为:1÷(90+60)=2,
当0≤x≤2时,函数解析式为s=-150x+1,
2<x≤时,s=150x-1
<x≤5时,s=60x;
(3)在s=-150x+1中.当s=0时,x=2.即甲乙两车经过2小时相遇.
因为乙车比甲车晚20分钟到达,20分钟=小时,
所以在y=-90x+1中,当y=0,x=.
所以,相遇后乙车到达终点所用的时间为+-2=(小时).
乙车与甲车相遇后的速度a=(1-2×60)÷=108(千米/时).
∴a=108(千米/时).
乙车离开B城高速公路入口处的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.
考点:一次函数的应用.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、3
【解析】
利用根与系数的关系可得两根之和与两根之积,再整体代入通分后的式子计算即可.
【详解】
解:∵,是一元二次方程的两个根,∴,
∴.
故答案为:3.
本题考查的是一元二次方程根与系数的关系,熟练掌握基本知识是解题的关键.
20、2
【解析】
先解出关于x的不等式,由数轴上表示的解集求出的范围即可.
【详解】
解:,
不等式组整理得:,
由数轴得:,可得,
解得:,
故答案为2
此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.
21、
【解析】
利用点B和点D的坐标之间的关系得到线段AB缩小2.5倍得到线段CD,然后确定C点坐标.
【详解】
解:∵将线段AB缩小得到线段CD,点B(5,0)的对应点D的坐标为(2.0),
∴线段AB缩小2.5倍得到线段CD,
∴点C的坐标为(1,2).
本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
22、1
【解析】
根据内角度数先算出外角度数,然后再根据外角和计算出边数即可.
【详解】
解:∵n边形的每个内角都是120°,
∴每一个外角都是180°-120°=10°,
∵多边形外角和为310°,
∴多边形的边数为310÷10=1,
故答案为:1.
此题主要考查了多边形的内角和外角,关键是掌握多边形的外角和等于310度.
23、6
【解析】
连接AC,根据三角形中位线性质可知AC=2EF,最后根据矩形对角线相等进一步求解即可.
【详解】
如图所示,连接AC,
∵E、F分别为AD、CD的中点,EF=3,
∴AC=2EF=6,
∵四边形ABCD为矩形,
∴BD=AC=6,
故答案为:6.
本题主要考查了三角形中位线性质与矩形性质的综合运用,熟练掌握相关概念是解题关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析
【解析】
(1)B、C、D保持不动,延长CD边的对边,使AB=CD,则四边形ABCD是格点平行四边形;
(2)把正方形的一边作为平行四边形的对角线,这边的对边中点作为平行四边形的一个顶点,然后根据对角线互相平分的四边形是平行四边形作图即可.
【详解】
(1)解:如图1中,平行四边形ABCD即为所求(答案不唯一)
(2)解:如图2中平行四边形ABCD即为所求( 答案不唯一 )
本题考查作图,解题关键在于熟悉所做图形的基本性质与判定.
25、成立,理由见解析.
【解析】
取AB的三等分点,连接GE,由点E是边BC的三等分点,得到BE=BG,根据正方形的性质得到AG=EC,根据全等三角形的性质即可得到结论.
【详解】
证明:取AB的三等分点,连接GE,
∵点E是边BC的三等分点,
∴BE=BG,
∵四边形ABCD是正方形,
∴AG=EC,
∵△EBG为等腰直角三角形,可知∠AGE=135°,
∵∠AEF=90°,
∠BEA+∠FEC=90°,
∠BEA+∠BAE=90°,
∴∠BAE=∠FEC.
∴△AGE≌△ECF(ASA),
∴AE=EF.
此题考查正方形的性质,三角形全等的判定与性质,角平分线的性质等知识点,注意结合图形,灵活作出辅助线解决问题.
26、2.5
【解析】
一次函数的解析式为y=kx+b,图像经过(﹣4,15),(6,﹣5)两点,把这两点代入函数即可求出k、b的值,再把P(m,2)代入函数即可求出m值.
【详解】
解:设一次函数解析式为y=kx+b,
把(﹣4,15),(6,﹣5)代入得,
解得:,
所以一次函数解析式为y=﹣2x+7,
把P(m,2)代入y=﹣2x+7,可得:﹣2m+7=2,
解得:m=2.5.
本题主要考查了待定系数法求一次函数解析式,牢牢掌握该法是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
西藏省重点中学2025届九上数学开学统考试题【含答案】: 这是一份西藏省重点中学2025届九上数学开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
邵阳市重点中学2025届数学九上开学统考模拟试题【含答案】: 这是一份邵阳市重点中学2025届数学九上开学统考模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
吉林市重点中学2025届数学九上开学统考试题【含答案】: 这是一份吉林市重点中学2025届数学九上开学统考试题【含答案】,共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

