


陕西省合阳县2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】
展开这是一份陕西省合阳县2024-2025学年数学九年级第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图, 直线与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点, 点P为OA上一动点, 当PC+PD最小时, 点P的坐标为( )
A.(-4,0)B.(-1,0)C.(-2,0)D.(-3,0)
2、(4分)直线y=2x﹣6与x轴的交点坐标是( )
A.(0,3)B.(3,0)C.(0,﹣6)D.(﹣3,0)
3、(4分)如图,直线与分别交x轴于点,,则不等式的解集为( )
A.B.C.D.或
4、(4分)如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是( )
A.21,22B.21,21.5C.10,21D.10,22
5、(4分)如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形;把正方形边长按原法延长一倍得到正方形;以此进行下去,则正方形的面积为
A.B.C.D.
6、(4分)已知直线 y=-x+6交x轴于点A,交y轴于点B,点P在线段OA上,将△PAB沿BP翻折,点A的对应点A′恰好落在y轴上,则的值为( )
A.B.1C.D.
7、(4分)某平行四边形的对角线长为x,y,一边长为6,则x与y的值可能是( )
A.4和7B.5和7C.5和8D.4和17
8、(4分)如图,在中,,将绕点C按逆时针方向旋转得到,点A在边上,则的大小为
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直角三角形的三边长分别为、、,若,,则__________.
10、(4分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、1.已知这组数据的众数与平均数相等,那么这组数据的中位数是________.
11、(4分)如图,圆柱体的高为8cm,底面周长为4cm,小蚂蚁在圆柱表面爬行,从A点到B点,路线如图所示,则最短路程为_____.
12、(4分)如图1,平行四边形纸片的面积为120,,.沿两对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图2所示,则图形戊的两条对角线长度之和是 .
13、(4分)一组数据的平均数是则这组数据的方差为__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:
(1)他们在进行 米的长跑训练,在0<<15的时间内,速度较快的人是 (填“甲”或“乙”);
(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;
(3)当=15时,两人相距多少米?
(4)在15<<20的时间段内,求两人速度之差.
15、(8分)(1)分解因式:a3-2a2b+ab2;
(2)解方程:x2+12x+27=0
16、(8分) “五一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.
(1)求他们出发半小时时,离家多少千米?
(2)求出AB段图象的函数表达式;
(3)他们出发2小时时,离目的地还有多少千米?
17、(10分)如图,在平面直角坐标系中,直线与、轴分别交于、两点.点为线段的中点.过点作直线轴于点.
(1)直接写出的坐标;
(2)如图1,点是直线上的动点,连接、,线段在直线上运动,记为,点是轴上的动点,连接点、,当取最大时,求的最小值;
(3)如图2,在轴正半轴取点,使得,以为直角边在轴右侧作直角,,且,作的角平分线,将沿射线方向平移,点、,平移后的对应点分别记作、、,当的点恰好落在射线上时,连接,,将绕点沿顺时针方向旋转后得,在直线上是否存在点,使得为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
18、(10分)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如果直线 y=kx+3 与两坐标轴围成三角形的面积为 3,则 k 的值为_____.
20、(4分)当1≤x≤5时,
21、(4分)若反比例函数y=的图象经过点(2,﹣3),则k=_____.
22、(4分)若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.
23、(4分)如图,在△ABC中,∠CAB=70º,在同一平面内,将△ABC绕点逆时针旋转50º到△的位置,则∠= _________度.
二、解答题(本大题共3个小题,共30分)
24、(8分)哈市某专卖店销售某品牌服装,设服装进价为80元,当每件服装售价为240元时,月销售为200件,该专卖店为提高经营利润,准备采取降价的方式进行促销,经市场调查发现:当每件价格每下降10元时,月销售量就会增加20件,设每件服装售价为x(元),该专卖店的月利润为y(元).
(1)求出y与x的函数关系式(不要求写出x的取值范围);
(2)该专卖店要获得最大月利润,售价应定为每件多少元?最大利润是多少?
25、(10分)如图所示,已知:Rt△ABC中,∠ACB=90°.作∠BAC的平分线AM交BC于点D,在所作图形中,将Rt△ABC沿某条直线折叠,使点A与点D重合,折痕EF交AC于点E,交AB于点F,连接DE、DF,再展回到原图形,得到四边形AEDF.
(1)试判断四边形AEDF的形状,并证明;
(2)若AB=10,BC=8,在折痕EF上有一动点P,求PC+PD的最小值.
26、(12分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE
(1)求证:ED平分∠AEB;
(2)若AB=AC,∠A=38°,求∠F的度数.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标并根据三角形中位线定理得出CD//x轴,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.
【详解】
解:连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示
在中,当y=0时,,解得x=-8,A点坐标为,
当x=0时,,B点坐标为,
∵点C、D分别为线段AB、OB的中点,
∴点C(-4,3),点D(0,3),CD∥x轴,
∵点D′和点D关于x轴对称,
∴点D′的坐标为(0,-3),点O为线段DD′的中点.
又∵OP∥CD,
∴OP为△CD′D的中位线,点P为线段CD′的中点,
∴点P的坐标为,
故选:C.
本题考查轴对称——最短路径问题,一次函数图象与坐标轴交点问题,三角形中位线定理.能根据轴对称的性质定理找出PC+PD值最小时点P的位置是解题的关键.
2、B
【解析】
把y=0代入y=2x﹣6即可求得直线 与 轴的交点坐标.
【详解】
当y=0时,2x-6=0,解得:x=3,
所以,与x轴的交点坐标是(3,0),选B。
此题考查一次函数图象上点的坐标特征,解题关键在于把y=0代入解析式
3、D
【解析】
把,转化为不等式组①或②,然后看两个函数的图象即可得到结论.
【详解】
∵
∴①或②
∵直线与分别交x轴于点,
观察图象可知①的解集为:,②的解集为:
∴不等式的解集为或.
故选D.
本题主要考查一次函数和一元一次不等式,学会根据图形判断函数值的正负是关键.
4、A
【解析】
根据众数和中位数的定义求解.
【详解】
解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.
故选A.
本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.
5、B
【解析】
根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.
【详解】
解:如图,已知小正方形ABCD的面积为1,则把它的各边延长一倍后,的面积,
新正方形的面积是,
从而正方形的面积为,
以此进行下去,
则正方形的面积为.
故选:B.
此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.
6、C
【解析】
设:PA=a=PA′,则OP=6-a,OA′=-6,由勾股定理得:PA′2=OP2+OA′2,即可求解.
【详解】
解:如图,y=-x+6,令x=0,则y=6,令y=0,则x=6,
故点A、B的坐标分别为(6,0)、(0,6),则AB==A′B,
设:PA=a=PA′,则OP=6-a,OA′=-6,
由勾股定理得:PA′2= OA′2+OP2,
即(a)2=(-6)2+(6-a)2,
解得:a=12-,
则PA=12-,OP=−6,
则.
故选:C.
本题考查的是一次函数图象上点的坐标特征,关键在于在画图的基础上,利用勾股定理:PA′2= OA′2+OP2,从而求出PA、OP线段的长度,进而求解.
7、C
【解析】
分析: 如图:因为平行四边形的对角线互相平分,所, ,在 中任意两边之和大于第三边,任意两边之差小于第三边,将各答案代入验证即可求得.
详解: A、∵ , ∴不可能;
B、∵,∴不可能;
C、∵,∴可能;
D、,∴不可能;
故选C..
点睛: 本题考查平行四边形的性质以及三角形的三边关系定理.熟练掌握平行四边形的性质和三角形三条边的关系式解答本题的关键.
8、A
【解析】
由旋转可得∠ACB =∠ACB,,所以,=90-48=42.
【详解】
由旋转可得∠ACB =∠ACB=48,因为在中,,
所以,=90-48=42.
故选A
本题考核知识点:旋转. 解题关键点:理解旋转的性质.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或5
【解析】
根据斜边分类讨论,然后利用勾股定理分别求出c的值即可.
【详解】
解:①若b是斜边长
根据勾股定理可得:
②若c是斜边长
根据勾股定理可得:
综上所述:或5
故答案为:或5
此题考查的是勾股定理,掌握用勾股定理解直角三角形和分类讨论的数学思想是解决此题的关键.
10、2
【解析】
根据题意先确定x的值,再根据中位数的定义求解.
【详解】
解:当x=1或12时,有两个众数,而平均数只有一个,不合题意舍去.
当众数为2,根据题意得:
解得x=2,
将这组数据从小到大的顺序排列1,2,2,2,12,
处于中间位置的是2,
所以这组数据的中位数是2.
故答案为2.
本题主要考查了平均数、众数与中位数的意义,解题时需要理解题意,分类讨论.
11、10cm
【解析】
将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,从而求出解题中的AC,连接AB,根据两点之间线段最短可得小蚂蚁爬行的最短路程为此时AB的长,然后根据勾股定理即可求出结论.
【详解】
解:将圆柱沿过点A和点B的母线剪开,展开成平面,由圆柱路线可知小蚂蚁在水平方向爬行的路程等于个底面周长,如下图所示:AC=1.5×4=6cm,连接AB,根据两点之间线段最短,
∴小蚂蚁爬行的最短路程为此时AB的长
∵圆柱体的高为8cm,
∴BC=8cm
在Rt△ABC中,AB=cm
故答案为:10cm.
此题考查的是利用勾股定理求最短路径问题,将圆柱的侧面展开,根据两点之间线段最短即可找出最短路径,然后利用勾股定理求值是解决此题的关键.
12、26
【解析】
如图,则可得对角线EF⊥AD,且EF与平行四边形的高相等.
∵平行四边形纸片ABCD的面积为120,AD=20,
∴EF="120/20" =6,
又BC=20,
∴对角线之和为20+6=26,
13、8
【解析】
根据平均数的公式计算出x后,再运用方差的公式即可解出本题.
【详解】
x=6×5−2−6−10−8=4,
S=[(2−6) +(6−6) +(4−6) +(10−6) +(8−6) ]=×40=8,
故答案为:8.
此题考查算术平均数,方差,解题关键在于掌握运算法则
三、解答题(本大题共5个小题,共48分)
14、(1)5000;甲;(2);(3)750米;(4)150米/分.
【解析】
(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<<15的时间内,,所以甲跑的快;
(2)分段求解析式,在0<<15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤≤20的时间内,由点(15,2000),(20,0)来求解析式;
(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;
(4)在15<<20的时间段内,求得乙的速度,然后计算他们的速度差.
【详解】
(1)根据图象信息可知,他们在进行5000米的长跑训练,
在0
把(0,5000),(15,2000)代入解析式,解得k=-200,b=5000,
所以y=-200x+5000;
②在15≤≤20内,设,
把(15,2000),(20,0)代入解析式,解得,,
所以y=-400x+8000,
所以乙距终点的路程(米)与跑步时间(分)之间的函数关系式为:;
(3)甲的速度为5000÷20=250(米/分),250×15=3750米,距终点5000-3750=1250米,
此时乙距终点2000米,所以他们的距离为2000-1250=750米;
(4)在15<<20的时间段内,乙的速度为2000÷5=400米/分,甲的速度为250米/分,所以他们的速度差为400-250=150米/分.
考点:函数图象;求一次函数解析式.
15、a(a-b)2,x=-3或x=-9.
【解析】
(1)先提取公因式,在运用公式法因式分解即可。
(2)运用因式分解法,即可解方程。
【详解】
解:(1)a3-2a2b+ab2
= a(a2-2ab+b2)
=a(a-b)2
(2) x2+12x+27=0
(x+3)(x+9)=27
即:x+3=0或x+9=0
解得:x=-3或x=-9
本题考查了因式分解及其应用,特别是用因式分解解一元二次方程是常用的方法。
16、(1)30(2)y=80x﹣30(1.5≤x≤2.5);(3)他们出发2小时,离目的地还有40千米
【解析】
(1)先设函数解析式,再根据点坐标求解析式,带入数值求解即可(2)根据点坐标求AB段的函数解析式(3)根据题意将x=2带入AB段解析式中求值即可.
【详解】
解:(1)设OA段图象的函数表达式为y=kx.
∵当x=1.5时,y=90,
∴1.5k=90,
∴k=60.
∴y=60x(0≤x≤1.5),
∴当x=0.5时,y=60×0.5=30.
故他们出发半小时时,离家30千米;
(2)设AB段图象的函数表达式为y=k′x+b.
∵A(1.5,90),B(2.5,170)在AB上,
∴①1.5k′+b=90 ② 2.5k′+b=170
解得k′=80 b=-30
∴y=80x-30(1.5≤x≤2.5);
(3)∵当x=2时,y=80×2-30=130,
∴170-130=40.
故他们出发2小时时,离目的地还有40千米.
此题重点考察学生对一次函数的实际应用能力,利用待定系数法来确定一次函数的表达式是解题的关键.
17、(1),(2),(3)存在,或
【解析】
(1)求出B,C两点坐标,利用中点坐标公式计算即可. (2)如图1中,作点B关于直线m的对称点,连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.求出直线CB′的解析式可得点P坐标,作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,此时PD′+D′C′+C′E的值最小. (3)如图2中,由题意易知,,.分两种情形:①当时,设.②当时,分别构建方程即可解决问题.
【详解】
解:(1)∵直线与轴分别交于C、B两点,
∴B(0,6),C(-8,0),
∵CD=DB, ∴D(-4,3).
(2)如图1中,作点B关于直线m的对称点B′(-4,6),连接CB′,延长CB′交直线m于点P,此时PC-PB的值最大.
∵C(-8,0),B′(-4,6),
∴直线CB′的解析式为, ∴P(-2,9),
作PT∥BC,且PT=CD=5,作TE⊥AC于E,交BC于C′,
此时PD′+D′C′+C′E的值最小.
由题意点P向左平移4个单位,向下平移3个单位得到T,
∴T(-6,6), ∴PD′+D′C′+C′E=TC′+PT+C′E=PT+TE=5+6=1.
∴PD′+D′C′+C′E的最小值为1.
(3)如图2中,延长交BK′于J,设BK′交OC于R.
∵B′S′=BS=4,S′K′=SK=,BK′平分∠CBO,
所以,所以OR=3,tan∠OBR= ,
∵∠S′JK′=∠OBR=∠RBC, ∴tan∠S′JK′==,
∴,∵, ∴,所以为的中点,
, ∴,
由旋转的性质可知:,.
①当时,设,
,
解得, 所以.
②当时,同理则有,
整理得:, 解得 ,
所以,
又因为,,所以直线为,
此时在直线上,此时三角形不存在,故舍去.
综上所述,满足条件的点N的坐标为或.
本题属于一次函数综合题,考查了一次函数的性质,轴对称最短问题,垂线段最短,等腰三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题.
18、甲优先录取.
【解析】
根据加权平均数的计算公式分别计算出甲、乙两人的成绩,再进行比较即得结果.
【详解】
解:甲的考评成绩是:88×30%+91×60%+88×10%=92.2,
乙的考评成绩是:91×30%+90×60%+90×10%=91.1.
答:甲优先录取.
本题考查了加权平均数的应用,属于基础题型,熟练掌握计算的方法是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、±
【解析】
找到函数y=kx+3与坐标轴的交点坐标,利用三角形面积公式表示出面积,解方程即可.
【详解】
解:∵直线 y=kx+3 与两坐标轴的交点为(0,3)(,0)
∴与两坐标轴围成三角形的面积=·3·||=3
解得:k=
故答案为
本题考查了一次函数与坐标轴的交点问题,属于简单题,明确函数与x轴的交点有两个是解题关键.
20、1.
【解析】
试题分析:根据x的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简.
试题解析:∵1≤x≤5,
∴x-1≥2,x-5≤2.
故原式=(x-1)-(x-5)=x-1-x+5=1.
考点: 二次根式的性质与化简.
21、-1
【解析】
把点A(2,﹣3)代入y=求得k的值即可.
【详解】
∵反比例函数y=的图象经过点(2,﹣3),
∴﹣3=,
解得,k=﹣1,
故答案为:﹣1.
本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得一次函数解析式是解题的关键.
22、1;
【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.
【详解】
解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.
本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.
23、10
【解析】
根据旋转的性质找到对应点、对应角进行解答.
【详解】
∵△ABC绕点A逆时针旋转50°得到△AB′C′,
∴∠BAB′=50°,
又∵∠BAC=70°,
∴∠CAB′=∠BAC-∠BAB′=1°.
故答案是:1.
本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点--旋转中心;②旋转方向;③旋转角度.
二、解答题(本大题共3个小题,共30分)
24、(1)y=−2x2+840x−54400;(2)售价应定为每件210元,最大利润是33800元.
【解析】
(1)由题意得到每件服装的利润为 x−80 元,则可得月销售量为 200+,再根据月利润等于总销量乘以每件服装的利润即可得到;
(2) 由(1)得到y=−2x2+840x−54400经过变形得到y=−2(x−210)2+33800,即可得到答案.
【详解】
解:(1)每件服装的利润为 x−80 元,月销售量为 200+,所以月利润:
y=(x-80)⋅( 200+)=(x−80)(680−2x)=−2x2+840x−54400,所以函数关系式为y=−2x2+840x−54400;
(2) y=−2x2+840x−54400=−2(x−210)2+33800
所以,当x=210时,y最大=33800 .
即售价应定为每件210元,最大利润是33800元.
答:售价应定为每件210元,最大利润是33800元.
本题考查一元二次函数的实际应用,解题的关键是读懂题意,得到等式关系.
25、(1)见解析;(2)PC+PD的最小值为:1.
【解析】
(1)根据对称性,围绕证明对角线互相垂直平分找条件;
(2)求线段和最小的问题,P点的确定方法是:找D点关于直线EF的对称点A,再连接AC,AC与直线EF的交点即为所求.
【详解】
解:(1)四边形AEDF为菱形,
证明:由折叠可知,EF垂直平分AD于G点,
又∵AD平分∠BAC,
∴△AEG≌△AFG,
∴GE=GF,
∵EF垂直平分AD,
∴EF、AD互相垂直平分,
∴四边形AEDF为菱形(对角线互相垂直平分的四边形是菱形).
(2)已知D点关于直线EF的对称点为A,AC与EF的交点E即为所求的P点,
PC+PD的最小值为:CP+DP=CE+DE=CE+AE=AC= =1.
故答案为:(1)见解析;(2)PC+PD的最小值为:1.
本题考查折叠问题以及菱形的判定.解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后线段相等.
26、(1)见解析;(2)∠F=19°.
【解析】
(1)利用等腰三角形的三线合一即可解决问题;
(2)根据等腰三角形的性质可求出∠ABC的度数,根据等腰三角形“三线合一”的性质可证明∠BDF=90°.进而根据直角三角形两锐角互余的性质可求出∠F的度数.
【详解】
(1)∵∠A=∠ABE,
∴EA=EB,
∵AD=DB,
∴DE是∠AEB的平分线.
(2)∵∠A=38°,AB=AC,
∴∠ABC=∠ACB=71°,
∵EA=EB,AD=DB,
∴ED⊥AB,
∴∠F=90°﹣∠ABC=19°.
本题考查等腰三角形的性质及直角三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题关键.
题号
一
二
三
四
五
总分
得分
批阅人
考评项目
成绩/分
甲
乙
理论知识(笔试)
88
95
模拟上课
95
90
答 辩
88
90
相关试卷
这是一份陕西省榆林市绥德2024-2025学年九年级数学第一学期开学质量检测模拟试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份陕西省西安市名校2024-2025学年数学九年级第一学期开学教学质量检测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年陕西省延安市区实验中学九年级数学第一学期开学复习检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。