


江苏省扬州市2025届九上数学开学检测试题【含答案】
展开
这是一份江苏省扬州市2025届九上数学开学检测试题【含答案】,共20页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列各命题的逆命题成立的是( )
A.全等三角形的对应角相等B.若两数相等,则它们的绝对值相等
C.若两个角是45,那么这两个角相等D.两直线平行,同位角相等
2、(4分)下列四个命题:①小于平角的角是钝角;②平角是一条直线;③等角的余角相等;④凡直角都相等.其中真命题的个数的是( )
A.个B.个C.个D.个
3、(4分)如图,把两块全等的的直角三角板、重叠在一起,,中点为,斜边中点为,固定不动,然后把围绕下面哪个点旋转一定角度可以使得旋转后的三角形与原三角形正好合成一个矩形(三角板厚度不计)( )
A.顶点B.顶点C.中点D.中点
4、(4分)甲、乙、丙、丁四名射击选手,在相同条件下各射靶10次,他们的成绩统计如下表所示,
若要从他们中挑选一位成绩最高且波动较小的选手参加射击比赛,那么一般应选( )
A.甲B.乙C.丙D.丁
5、(4分)如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是( )
A.11B.10C.9D.8
6、(4分)八(1)班班长统计2017年5~12月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制出如下折线统计图,下列说法不正确的是( )
A.众数是58B.平均数是50
C.中位数是58D.每月阅读数量超过40本的有6个月
7、(4分)函数y=2x﹣5的图象经过( )
A.第一、三、四象限B.第一、二、四象限
C.第二、三、四象限D.第一、二、三象限
8、(4分)要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )
A.甲B.乙C.丙D.无法确定
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如图,AB∥CD,∠B=68°,∠E=20°,则∠D的度数为 .
10、(4分)如图,在平行四边形ABCD中,∠BAD的平分线AE交边CD于E,▱ABCD的周长是16cm,EC=2cm,则BC=______.
11、(4分)若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.
12、(4分)如图,矩形ABCD的对角线AC与BD交于点0,过点O作BD的垂线分别交AD、BC于E.F两点,若AC =2,∠DAO =300,则FB的长度为________ .
13、(4分)若+( x-y+3)2=0,则(x+y)2018=__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题: :
(1)根据上表填空: __,=. ,= .
(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?
(3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?
15、(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:若日销量y是销售价x的一次函数.
(1)求出日销量y(件)与销售价x(元)的函数关系式;
(2)求销售定价为30元时,每日的销售利润.
16、(8分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
17、(10分)计算(1)(﹣)0++|2﹣|
(2)(﹣)÷+(2+)(2﹣)
18、(10分)计算化简
(1)
(2)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系xOy中,直线与x轴的交点为A,与y轴的交点为B,且,则k的值为_____________.
20、(4分)一次函数的图象如图所示,当时,的取值范围为__________.
21、(4分)计算_________.
22、(4分)如图,在矩形ABCD,BE平分,交AD于点E,F是BE的中点,G是BC的中点,连按EC,若,,则FG的长为________。
23、(4分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是___________.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.
求证:四边形BECF是正方形.
25、(10分)如图,,平分,交于点,平分,交于点,连接.求证:四边形是菱形.
26、(12分)再读教材:
宽与长的比是 (约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示; MN=2)
第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.
第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.
第三步,折出内侧矩形的对角线 AB,并把 AB折到图③中所示的AD处,
第四步,展平纸片,按照所得的点D折出 DE,使 DE⊥ND,则图④中就会出现黄金矩形,
问题解决:
(1)图③中AB=________(保留根号);
(2)如图③,判断四边形 BADQ的形状,并说明理由;
(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
(4)结合图④.请在矩形 BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
先分别写出四个命题的逆命题,根据三角形全等的判定方法对A的逆命题进行判断;根据相反数的绝对值相等对B的逆命题进行判断;根据两个角相等,这两个角可为任意角度可对C的逆命题进行判断;根据平行线的判定定理对D的逆命题进行判断.
【详解】
A. “全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以A选项错误;
B. “若两数相等,则它们的绝对值相等”的逆命题为“若两数的绝对值相等,则这两数相等”,此逆命题为假命题,所以B选项错误;
C. “若两个角是45°,那么这两个角相等”的逆命题为“若两个角相等,你们这两个角是45°”,此逆命题为假命题,所以C选项错误;
D. “两直线平行,同位角相等”的逆命题为“同位角相等,两直线平行”,此逆命题为真命题,所以D选项正确.
故选D.
此题考查命题与定理,解题关键在于掌握掌握各性质定义.
2、B
【解析】
根据平角、余角和直角的概念进行判断,即可得出答案.
【详解】
(1)钝角应大于90°而小于180°,故此选项错误;(2)角和直线是两个不同的概念,故此选项错误;(3)根据余角的概念可知:等角的余角相等,故此选项正确;(4)直角都等于90°,故此选项正确.因此答案选择B.
本题主要考查了角的有关概念,等角的余角相等的性质.特别注意角和直角是两个不同的概念,不要混为一谈.
3、D
【解析】
运用旋转的知识逐项排除,即可完成解答.
【详解】
A,绕顶点A旋转可以得到等腰三角形,故A错误;
B,绕顶点B旋转得不到矩形,故B错误;
C,绕中点P旋转可以得到等腰三角形,故C错误;
D,绕中点Q旋转可以得到等腰三角形,故D正确;
因此答案为D.
本题主要考查了旋转,解题的关键在于具有丰富的空间想象能力.
4、B
【解析】
∵乙、丁的平均数都是9.5,乙的方差是4,丁的方差是5.4,
∴S2乙> S2丁,
∴射击成绩最高且波动较小的选手是乙;
故选:B.
5、B
【解析】
利用平行四边形的性质可知AO=2,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=1.
【详解】
解:∵四边形ABCD是平行四边形,
∴BD=2BO,AO=OC=2.
在Rt△ABO中,利用勾股定理可得:BO=
∴BD=2BO=1.
故选:B.
本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.
6、B
【解析】
根据众数的定义,可判断A;根据平均数的计算方法,可判断B;根据中位数的定义,可判断C;根据折线统计图中的数据,可判断D.
【详解】
A. 出现次数最多的是58,众数是58,故A正确;
B.平均数为:,故B错误;
C. 由小到大顺序排列数据28,36,42,58,58,70,75,83,中位数是=58,故C正确;
D. 由折线统计图看出每月阅读量超过40本的有6个月,故D正确;
故选:B
此题考查折线统计图,算术平均数,中位数,众数,解题关键在于看懂图中数据.
7、A
【解析】
先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.
【详解】
∵一次函数y=2x-5中,k=2>0,
∴此函数图象经过一、三象限,
∵b= -5<0,
∴此函数图象与y轴负半轴相交,
∴此一次函数的图象经过一、三、四象限,不经过第二象限.
故选A.
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.
8、C
【解析】
分析:根据方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定解答即可.
详解:因为3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,
所以这10次测试成绩比较稳定的是丙,
故选C.
点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、48°
【解析】
试题分析:因为AB∥CD,∠B=68°,所以∠CFE=∠B=68°,又∠CFE=∠D+∠E, ∠E=20°,所以∠D=∠CFE-∠E=68°-20°=48°.
考点:1.平行线的性质2.三角形的外角的性质
10、1
【解析】
由平行四边形的性质和已知条件证出∠BAE=∠DEA,证出AD=DE;求出AD+DC=8,得出BC=1.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=CD,AD=BC,
∴∠BAE=∠DEA,
∵平行四边形ABCD的周长是16,
∴AD+DC=8,
∵AE是∠BAD的平分线,
∴∠BAE=∠DAE,
∴∠BAE=∠AEB,
∴AD=DE,
∵EC=2,
∴AD=1,
∴BC=1,
故答案为:1.
本题考查平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质和角平分线的性质.
11、-3
【解析】
把坐标带入解析式即可求出.
【详解】
y=kx+b的图象经过点P(﹣2,3),
∴3=﹣2k+b,
∴2k﹣b=﹣3,
故答案为﹣3;
此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.
12、2
【解析】
先根据矩形的性质,推理得到∠OBF=30°,,再根据含30°角的性质可得OF=BF ,利用勾股定理即可得到BF的长.
【详解】
解:∵四边形ABCD是矩形,
∴OA=OD,
∴∠OAD=∠ODA=30°,
∵EF⊥BD,
∴∠BOF=90°,
∵四边形ABCD是矩形,
∴AD∥BC,,
∴∠OBF=∠ODA =30°,
∴OF=BF.
又∵Rt△BOF中,
BF2-OF2=OB2,
∴BF2-BF2= ,
∴BF=2.
本题主要考查了矩形的性质以及勾股定理的运用,解决问题的关键是掌握:矩形的对角线相等且互相平分.
13、1
【解析】
分析:根据几个非负数的和为0时,这几个非负数都为0列出算式,求出x、y的值,计算即可.
详解:由题意得:x+2=0,x﹣y+3=0,解得:x=﹣2,y=1,则(x+y)2018=(-2+1)2018=1.
故答案为:1.
点睛:本题考查了非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2);(1)24.
【解析】
(1)根据频数、频率、总数之间的关系一一解决问题即可;
(2)根据中位数的定义即可判断;
(1)用样本估计总体的思想解决问题即可.
【详解】
解:(1)9÷0.18=50(人).
a=50×0.06=1,m=50﹣(9+21+1+2)=15,b=15÷50=0.1.
故答案为:1,0.1,15;
(2)共有50名学生,中位数是第25、26个数据的平均数,第25、26个数据在第1组,所以小青的测试成绩在70≤x<80范围内;
(1)×600=24(人).
答:共有24名学生被选拔参加决赛.
本题考查频数分布直方图、样本估计总体的思想、频数分布表、中位数的定义等知识,解题的关键是熟练掌握基本知识,所以中考常考题型.
15、 (1) y=﹣x+1;(2)200元
【解析】
(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.
(2)把x=30代入函数式求y,根据:(售价-进价)×销售量=利润,求解.
【详解】
解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).
则
解得
即一次函数解析式为y=﹣x+1.
(2)当x=30时,每日的销售量为y=﹣30+1=10(件)
每日所获销售利润为(30﹣10)×10=200(元)
本题主要考查用待定系数法求一次函数关系式,解题的关键是理解题意,学会构建一次函数解决实际问题.
16、(1),;(2)2,2,1,1(答案不唯一);(3)=7或=1.
【解析】
(1)∵,
∴,
∴a=m2+3n2,b=2mn.
故答案为m2+3n2,2mn.
(2)设m=1,n=2,∴a=m2+3n2=1,b=2mn=2.
故答案为1,2,1,2(答案不唯一).
(3)由题意,得a=m2+3n2,b=2mn.
∵2=2mn,且m、n为正整数,
∴m=2,n=1或m=1,n=2,
∴a=22+3×12=7,或a=12+3×22=1.
17、(1)﹣;(2)1.
【解析】
(1)此题涉及零次幂、开立方和绝对值3个考点,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
(2)首先计算括号里面二次根式的减法,再计算括号外的乘除,最后计算加减即可.
【详解】
解:(1)原式=1﹣3+2﹣=﹣;
(2)原式=(5﹣4)÷+4﹣5=÷+4﹣5=1+4﹣5=1.
本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
18、(1)(2)
【解析】
(1)原式第一项利用零指数公式化简,第二项利用负指数公式化简,最后一项利用绝对值的代数意义化简,计算即可得到结果;
(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.
【详解】
解:(1)原式=1+3-(-2)=6-;
(2)原式==
本题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
先根据解析式确定点A、B的坐标,再根据三角形的面积公式计算得出答案.
【详解】
令中y=0得x=-,令x=0得y=2,
∴点A(-,0),点B(0,2),
∴OA=,OB=2,
∵,
∴,
解得k=,
故答案为:.
此题考查一次函数图象与坐标轴的交点,一次函数与几何图形面积,正确理解OA、OB的长度是解题的关键.
20、
【解析】
根据函数图象与y轴的交点坐标和函数的增减性可直接解答.
【详解】
解:∵一次函数y=kx+b(k≠0)与y轴的交点坐标为(0,3),y随x的增大而减小,
∴当x>0时,y
相关试卷
这是一份江苏省扬州市部分区、县2025届数学九上开学调研模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届江苏省扬州市名校九上数学开学达标测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省扬州市教育科研究院九上数学开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。