


广东省潮州湘桥区六校联考2025届九上数学开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是( )
A.84分B.87.6分C.88分D.88.5分
2、(4分)如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是( )
A.
B.
C.
D.
3、(4分)在直角三角形中,自锐角顶点所引的两条中线长为和,那么这个直角三角形的斜边长为( )
A.6B.7C.2D.2
4、(4分)已知反比例函数(k为常数,且k≠0)的图象经过点(3,4),则该函数图象必不经过点( )
A.(2,6)B.(-1,-12)C.(,24)D.(-3,8)
5、(4分)四边形ABCD中,,,M、N分别是边AD,BC的中点,则线段MN的长的取值范围是( )
A.B.C.D.
6、(4分)点(-2,3)关于x轴的对称点为( ).
A.(-2,-3)B.(2,-3)C.(2,3)D.(3,-2)
7、(4分)直角三角形的三边为a、b、c,其中a、b两边满足,那么这个三角形的第三边c的取值范围为( )
A.c>6B.6<c<8C.2<c<14D.c<8
8、(4分)把分解因式,正确的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)直角三角形的两边长分别为5和4,则该三角形的第三边的长为_____.
10、(4分)计算_____.
11、(4分)观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.
12、(4分)如图,矩形中,,延长交于点,延长交于点,过点作,交的延长线于点,,则=_________.
13、(4分)1955年,印度数学家卡普耶卡()研究了对四位自然数的一种变换:任给出四位数,用的四个数字由大到小重新排列成一个四位数,再减去它的反序数(即将的四个数字由小到大排列,规定反序后若左边数字有0,则将0去掉运算,比如0001,计算时按1计算),得出数,然后继续对重复上述变换,得数,…,如此进行下去,卡普耶卡发现,无论是多大的四位数,只要四个数字不全相同,最多进行次上述变换,就会出现变换前后相同的四位数,这个数称为变换的核.则四位数9631的变换的核为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
15、(8分)4月23日是“世界读书日”,某校在“世界读书日”活动中,购买甲、乙两种图书共150本作为活动奖品,已知乙种图书的单价是甲种图书单价的1.5倍.若用180元购买乙种图书比要购买甲种图书少2本.
(1)求甲、乙两种图书的单价各是多少元?
(2)如果购买图书的总费用不超过5000元,那么乙种图书最多能买多少本?
16、(8分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.
(1)求反比例函数的解析式;
(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O,点P;
②矩形的面积等于k的值.
17、(10分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.
18、(10分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)有一组数据:其众数为,则的值为_____.
20、(4分)甲、乙两人进行射击测试,每人20次射击的平均成绩恰好相等,且他们的标准差分别是S甲=1.8,S乙=0.1.在本次射击测试中,甲、乙两人中成绩较为稳定的是_____.(填:甲或乙)
21、(4分)如图,在▱ABCD中,已知AD=9cm,AB=6cm,DE平分∠ADC,交BC边于点E,则BE=______cm.
22、(4分)将二次根式化为最简二次根式的结果是________________
23、(4分)如图,在△MBN 中,已知:BM=6,BN=7,MN=10,点 A C,D 分别是 MB,NB,MN 的中点,则四边形 ABCD 的周长 是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)已知一次函数的图象经过,两点.
(1)求这个一次函数的解析式;
(2)试判断点是否在这个一次函数的图象上;
(3)求此函数图象与轴,轴围成的三角形的面积.
25、(10分)如图,在平面直角坐标系中,点A,B的坐标分别是(-3,0),(0,6),动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动.以CP,CO为邻边构造PCOD.在线段OP延长线上一动点E,且满足PE=AO.
(1)当点C在线段OB上运动时,求证:四边形ADEC为平行四边形;
(2)当点P运动的时间为秒时,求此时四边形ADEC的周长是多少.
26、(12分)如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF//AB交AC于F
(1)求证:AE=DF,
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
根据加权平均数的计算方法进行计算即可得出答案.
故选B.
【详解】
解:(分).
本题考查了加权平均数.理解“权”的含义是解题的关键.
2、D
【解析】
试题解析:动点P运动过程中:
①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;
②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;
③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;
④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;
⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.
结合函数图象,只有D选项符合要求.
故选D.
考点:动点问题的函数图象.
3、A
【解析】
根据题意画出图形,利用勾股定理解答即可.
【详解】
如图,
设AC=b,BC=a,分别在直角△ACE与直角△BCD中,根据勾股定理得到:
,
两式相加得:a2+b2=31,
根据勾股定理得到斜边==1.
故选A.
本题是根据勾股定理,把求直角三角形的斜边长的问题转化为求两直角边的平方和的问题.
4、D
【解析】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),求出k值,然后依次判断各选项即可
【详解】
反比例函数(k为常数,且k≠0)的图象经过点(3,4),k=3×4=12;
依次判断:A、2×6=12经过,B、-1×(-12)=12经过,C、×24=12经过,D、-3×8=-24不经过,故选D
熟练掌握反比例函数解析式的基础知识是解决本题的关键,难度不大
5、C
【解析】
如图,连接BD,过M作MG∥AB交BD于G,连接NG,
∵M是边AD中点,AB=3,MG∥AB,
∴MG是边AD的中位线;
∴BG=GD, MG=AB=;
∵N是BC中点,BG=GD,CD=5,
∴NG是△BCD的中位线,
∴NG=CD=,
在三角形MNG中,由三角形三边关系得
NG-MG<MN<MG+NG
即-<MN<+
∴1<MN<4,
当MN=MG+NG,即当MN=4,四边形ABCD是梯形,
故线段MN的长取值为.
故选C.
此题主要考查中位线的应用,解题的关键是根据题意作出图形求解.
6、A
【解析】
根据关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,即可求出.
【详解】
解:∵关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数
∴点(-2,3)关于x轴的对称点为:(-2,-3)
故选A.
此题考查的是求一个点关于x轴对称的对称点的坐标,掌握关于x轴对称的两点的坐标规律:横坐标相同,纵坐标互为相反数,是解决此题的关键.
7、C
【解析】
根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.
【详解】
由题意得,a−12a+36=0,b−8=0,
解得a=6,b=8,
∵8−6=2,8+6=14,
∴2
此题考查三角形三边关系,解题关键在于据非负数的性质列式求出a、b
8、A
【解析】
由提公因式法,提出公因式a,即可得到答案.
【详解】
解:,
故选择:A.
本题考查了提公因式法,解题的关键是正确找出公因式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、3或
【解析】
试题分析:当5为斜边时,则第三边长为:=3;当5和4为直角边时,则第三边长为:,即第三边长为3或.
考点:直角三角形的勾股定理
10、-
【解析】
【分析】先分别进行二次根式的化简、二次根式的乘法运算,然后再进行二次根式的加减运算即可得.
【详解】-
=
=,
故答案为.
【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的顺序以及运算法则是解题的关键.
11、1
【解析】
通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.
【详解】
解:由题意知道:题目中的数据可以整理为:,,…,
∴第13个答案为:.
故答案为:1.
此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.
12、
【解析】
通过四边形ABCD是矩形以及,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.
【详解】
解:如图,设NE交AD于点K,
∵四边形ABCD是矩形,
∴AD∥BC,∠ABC=90°,
∴∠MFE=∠FCB,∠FME=∠EBC
∵,
∴△BCE为等边三角形,
∴∠BEC=∠ECB=∠EBC=60°,
∵∠FEM=∠BEC,
∴∠FEM=∠MFE=∠FME=60°,
∴△FEM是等边三角形,FM=FE=EM=2,
∵EN⊥BE,
∴∠NEM=∠NEB=90°,
∴∠NKA=∠MKE=30°,
∴KM=2EM=4,NK=2AN=6,
∴在Rt△KME中,KE=,
∴NE=NK+KE=6+,
∵∠ABC=90°,
∴∠ABE=30°,
∴BN=2NE=12+,
∴BE=,
∴BC=BE=,
故答案为:
本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.
13、6174
【解析】
用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,类似地进行上述变换,可知5次变换之后,此时开始停在一个数6174上.
【详解】
解:用1的四个数字由大到小排列成一个四位数1.则1-1369=8262,
用8262的四个数字由大到小重新排列成一个四位数2.则2-2268=6354,
用6354的四个数字由大到小重新排列成一个四位数3.则3-3456=3087,
用3087的四个数字由大到小重新排列成一个四位数4.则4-378=8352,
用8352的四个数字由大到小重新排列成一个四位数5.则5-2358=6174,
用6174的四个数字由大到小重新排列成一个四位数6.则6-1467=6174…
可知7次变换之后,四位数最后都会停在一个确定的数6174上.
故答案为6174.
本题考查简单的合情推理.此类题可以选择一个具体的数根据题意进行计算,即可得到这个确定的数.
三、解答题(本大题共5个小题,共48分)
14、(1)(2,6);(2)作图见解析,点B'的坐标(0,-6);(3)(-7,3),(3,3),(-5,-3)
【解析】
(1)点B关于点A对称的点的坐标为(2,6);
(2)分别作出点A、B、C绕坐标原点O逆时针旋转90°后的点,然后顺次连接,并写出点B的对应点的坐标;
(3)分别以AB、BC、AC为对角线,写出第四个顶点D的坐标.
【详解】
解:(1)点B关于点A对称的点的坐标为(2,6);
(2)所作图形如图所示:
,
点B'的坐标为:(0,-6);
(3)当以AB为对角线时,点D坐标为(-7,3);
当以AC为对角线时,点D坐标为(3,3);
当以BC为对角线时,点D坐标为(-5,-3).
本题考查了根据旋转变换作图,轴对称的性质,以及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.
15、(1)甲种图书的单价为30元/本,乙种图书的单价为1元/本;(2)乙种图书最多能买2本.
【解析】
(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,根据“用180元购买乙种图书比要购买甲种图书少2本”列分式方程即可求出结论;
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,根据“购买图书的总费用不超过5000元”列出不等式即可得出结论.
【详解】
解:(1)设甲种图书的单价为x元/本,则乙种图书的单价为1.5x元/本,
依题意,得:-=2,
解得:x=30,
经检验,x=30是所列分式方程的解,且符合题意,
∴1.5x=1.
答:甲种图书的单价为30元/本,乙种图书的单价为1元/本.
(2)设乙种图书购买了m本,则甲种图书购买了(150-m)本,
依题意,得:30(150-m)+1m≤5000,
解得:m≤.
∵m为整数,
∴m的最大值为2.
答:乙种图书最多能买2本.
此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.
16、(1);(2)作图见解析.
【解析】
分析:(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;
(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.
详解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),
∴k=2×2=4,
∴反比例函数的解析式为y=;
(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.
点睛:本题考查了作图-应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.
17、证明见解析.
【解析】
首先根据平行四边形的性质,可得AD∥BC,AD=BC,BC∥EF,BC=EF,进而得出AD∥EF,AD=EF,即可判定.
【详解】
解:∵四边形ABCD和BEFC都是平行四边形,
∴AD∥BC,AD=BC,BC∥EF,BC=EF.
∴AD∥EF,AD=EF.
∴四边形AEFD是平行四边形.
此题主要考查利用平行四边形的性质进行平行四边形的判定,熟练掌握,即可解题.
18、见解析
【解析】
先证明△ABE与△FCE全等,根据全等三角形的对应边相等得到AB=CF;再由AB与CF平行,根据一组对边平行且相等的四边形为平行四边形得到ABFC为平行四边形.
【详解】
证明:∵四边形ABCD为平行四边形,
∴AB∥DC,
∴∠ABE=∠ECF,
又∵E为BC的中点,
∴BE=CE,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(ASA),
∴AB=CF,
又∵四边形ABCD为平行四边形,
∴AB∥CF,
∴四边形ABFC为平行四边形.
此题考查了平行四边形的判定与性质,全等三角形的判定与性质,熟练掌握基本判定与性质是解本题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
根据众数的定义进行求解即可,即众数是指一组数据中出现次数最多的数据.
【详解】
解:∵数据:2,1,1,x,5,5,6其众数为1,
∴x=1,
故答案为:1.
本题考查了众数的知识.解题的关键是熟练掌握众数的定义.
20、乙
【解析】
根据标准差的意义求解可得.标准差越小,稳定性越好.
【详解】
解:∵S甲=1.8,S乙=0.1,
∴S甲>S乙,
∴成绩较稳定的是乙.
故答案为:乙.
本题考查标准差的意义标准差是反应一组数据离散程度最常用的一种量化形式,是表示精密确的最要指标标准差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
21、1
【解析】
由平行四边形对边平行得AD∥BC,再根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.
【详解】
∵四边形ABCD是平行四边形,
∴AD∥BC,BC=AD=9cm,CD=AB=6cm,
∴∠EDA=∠DEC,
又∵DE平分∠ADC,
∴∠EDC=∠ADE,
∴∠EDC=∠DEC,
∴CE=CD=6cm,
∴BE=BC-EC=1cm,
故答案为:1.
本题考查了平行四边形性质,等腰三角形的判定,平行线的性质,角平分线的定义,求出CE=CD=6cm是解题的关键.
22、4
【解析】
直接利用二次根式的性质化简求出答案.
【详解】
,
故答案为:4
此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.
23、13
【解析】
根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长
【详解】
∵点A,C,D分别是MB,NB,MN的中点,
∴CD∥AB,AD∥BC,
∴四边形ABCD为平行四边形,
∴AB=CD,AD=BC.
∵BM=6,BN=7,点A,C分别是MB,NB的中点,
∴AB=3,BC=3.5,
∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.
故答案为13
本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1);(2)不在这个一次函数的图象上;(3)函数图象与轴,轴围成的三角形的面积=4.
【解析】
(1)利用待定系数法求一次函数解析式;
(2)利用一次函数图象上点的坐标特征进行判断;
(3)先利用一次函数解析式分别求出一次函数与坐标轴的两交点坐标,然后利用三角形面积公式求解.
【详解】
(1)设一次函数解析式为,
把,代入得,解得,
所以一次函数解析式为;
(2)当时,,
所以点不在这个一次函数的图象上;
(3)当时,,则一次函数与轴的交点坐标为,
当时,,解得,则一次函数与轴的交点坐标为,
所以此函数图象与轴,轴围成的三角形的面积.
本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.
25、 (1)证明见解析;(2) 四边形ADEC的周长为6+3.
【解析】
(1)连接CD交AE于F,根据平行四边形的性质得到CF=DP,OF=PF,根据题意得到AF=EF,又CF=DP,根据平行四边形的判定定理证明即可;
(2)根据题意计算出OC、OP的长,根据勾股定理求出AC、CE,根据平行四边形的周长公式计算即可.
【详解】
(1)证明:如答图,连接CD交AE于F.
∵四边形PCOD是平行四边形,
∴CF=DF,OF=PF.
∵PE=AO,
∴AF=EF.
又∵CF=DF,
∴四边形ADEC为平行四边形.
(2)解:当点P运动的时间为秒时,
OP=,OC=3,
则OE=.
由勾股定理,得AC==3,
CE==.
∵四边形ADEC为平行四边形,
∴四边形ADEC的周长为(3+)×2=6+3.
本题考查的知识点是平行四边形的性质和判定、勾股定理的应用,解题关键是掌握对角线互相平分的四边形是平行四边形.
26、(1)详见解析;(2)平行四边形AEDF为菱形;理由详见解析
【解析】
试题分析:(1)利用AAS推出△ADE≌△DAF,再根据全等三角形的对应边相等得出AE=DF;
(2)先根据已知中的两组平行线,可证四边形DEFA是▱,再利用AD是角平分线,结合AE∥DF,易证∠DAF=∠FDA,利用等角对等边,可得AE=DF,从而可证▱AEDF实菱形.
试题解析:(1)∵DE∥AC,∠ADE=∠DAF,
同理∠DAE=∠FDA,
∵AD=DA,
∴△ADE≌△DAF,
∴AE=DF;
(2)若AD平分∠BAC,四边形AEDF是菱形,
∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,
∴∠DAF=∠FDA.
∴AF=DF.
∴平行四边形AEDF为菱形.
考点:1.全等三角形的判定与性质;2.菱形的判定.
题号
一
二
三
四
五
总分
得分
批阅人
广东省潮州市2024-2025学年九上数学开学质量检测模拟试题【含答案】: 这是一份广东省潮州市2024-2025学年九上数学开学质量检测模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省深圳龙岗区六校联考数学九上开学检测试题【含答案】: 这是一份2025届广东省深圳龙岗区六校联考数学九上开学检测试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届广东省金平区六校联考九上数学开学检测试题【含答案】: 这是一份2025届广东省金平区六校联考九上数学开学检测试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。