


安徽省宿州市鹏程中学2025届九上数学开学监测试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,,垂直平分线段于点,的平分线交于点,连接,则等于( )
A.B.C.D.
2、(4分)如图,在直角坐标系中,有两点和,则这两点之间的距离是( )
A.B.13C.D.5
3、(4分)下列式子中,可以取和的是( )
A.B.C.D.
4、(4分)将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是( )
A.y=2xB.y=2x+2C.y=2x﹣4D.y=2x+4
5、(4分)下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
6、(4分)函数与在同一平面直角坐标系中的大致图像是( )
A.B.C.D.
7、(4分)如图.在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是( )
A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OC
8、(4分)下列二次根式中,不是最简二次根式的是( )
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知边长为4cm的正方形ABCD中,点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,则当PQcm时,点C到PQ的距离为______.
10、(4分)如图,在中,,,分别是,的中点,在的延长线上,,,,则四边形的周长是____________.
11、(4分)一个三角形的三边分别是、1、,这个三角形的面积是_____.
12、(4分)在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.
13、(4分)如图,函数y=kx+b(k≠0)的图象经过点(1,2),则不等式kx+b>2的解集为______.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,的对角线、相交于点,.
(1)求证:;
(2)若,连接、,判断四边形的形状,并说明理由.
15、(8分)甲、乙两人加工一种零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用的时间相等.
(1)求甲每小时加工多少个零件?
(2)由于厂家在12小时内急需一批这种零件不少于1000件,决定由甲、乙两人共同完成.乙临时有事耽搁了一段时间,先让甲单独完成一部分零件后两人合作完成剩下的零件.求乙最多可以耽搁多长时间?
16、(8分)矩形不一定具有的性质是( )
A.对角线互相平分B.对角线互相垂直
C.对角线相等D.是轴对称图形
17、(10分)化简:,再从不等式中选取一个合适的整数代入求值.
18、(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图所示:分别以直角三角形三边为边向外作三个正方形,其面积分别用、、表示,若,,则的长为__________.
20、(4分)已知P1(1,y1),P2(2,y2)是正比例函数的图象上的两点,则y1 y2(填“>”或“<”或“=”).
21、(4分)如果顺次连接四边形的四边中点得到的新四边形是菱形,则与的数量关系是___.
22、(4分)把直线y=﹣2x向上平移后得到直线AB,直线AB经过点(m,n),且2m+n=6,则直线AB的解析式为______.
23、(4分)如图,点D是等边内部一点,,,.则的度数为=________°.
二、解答题(本大题共3个小题,共30分)
24、(8分)小红同学根据学习函数的经验,对新函数的图象和性质进行了如下探究,请帮她把探究过程补充完整.
第一步:通过列表、描点、连线作出了函数的图象
第二步:在同一直角坐标系中作出函数的图象
(1)观察发现:函数的图象与反比例函数的图象都是双曲线,并且形状也相同,只是位置发生了改变.小红还发现,这两个函数图像既是中心对称图形,又是轴对称图形,请你直接写出函数的对称中心的坐标.
(2)能力提升:函数的图象可由反比例函数的图象平移得到,请你根据学习函数平移的方法,写出函数的图象可由反比例函数的图象经过怎样平移得到?
(3)应用:在所给的平面直角坐标系中画出函数的图像,若点,在函数的图像上,且时,直接写出、的大小关系.
25、(10分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:
(1)参加这次跳绳测试的共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是 ;
(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.
26、(12分)(1)解方程:=;
(2)因式分解:2x2-1.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由直角三角形的性质可得∠ABD的度数,然后由BE平分可求得∠EBC的度数,再根据线段垂直平分线的性质和等腰三角形的性质可得答案.
【详解】
解:∵垂直平分线段,
∴∠ADB=90°,EB=EC,
∵,
∴∠ABD=50°,
∵BE是的平分线,
∴∠EBC=∠ABD=25°,
∵EB=EC,∴∠C=∠EBC=25°.
故选A.
本题考查了直角三角形两锐角互余的性质、角平分线的概念、线段垂直平分线的性质和等腰三角形的性质,知识点虽多但难度不大,属于基础题型.
2、A
【解析】
在直角三角形中根据勾股定理即可求解.
【详解】
解:根据勾股定理得,这两点之间的距离为.
故选:A
本题考查了平面直角坐标系中两点间的距离,对于不在同一直线上的两点,可通过构造直角三角形由勾股定理求距离.
3、C
【解析】
根据分式有意义的条件和二次根式有意义的条件逐项分析即可.
【详解】
A. 当x=2时,x-2=0,此时无意义,故不符合题意;
B. 当x=3时,x-3=0,此时无意义,故不符合题意;
C. 当x=2时, x-2=0;x=3时,x-2>0,此时有意义,故符合题意;
D. 当x=2时,x-3=-1<0,此时无意义,故不符合题意;
故选C.
本题考查了分式和二次根式有意义的条件,当分式的分母不等于0时,分式有意义;当被开方式是非负数时,二次根式有意义.
4、A
【解析】
根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.
【详解】
解:y=2(x﹣2)+4=2x.
故选A.
本题考查一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.
5、C
【解析】
根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
【详解】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.
故选C.
本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
6、A
【解析】
先根据反比例函数的性质判断出m的取值,再根据一次函数的性质判断出m取值,二者一致的即为正确答案.
【详解】
A、由双曲线在一、三象限,得m<1.由直线经过一、二、四象限得m<1.正确;
B、由双曲线在二、四象限,得m>1.由直线经过一、四、三象限得m>1.错误;
C、由双曲线在一、三象限,得m<1.由直线经过一、四、三象限得m>1.错误;
D、由双曲线在二、四象限,得m>1.由直线经过二、三、四象限得m<1.错误.
故选:A.
此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于注意系数m的取值.
7、B
【解析】
A.菱形的对边平行且相等,所以AB∥DC,故本选项正确;
B.菱形的对角线不一定相等;
C.菱形的对角线互相垂直,所以AC⊥BD,故本选项正确;
D.菱形的对角线互相平分,所以OA=OC,故本选项正确.故选B.
8、C
【解析】
根据最简二次根式的定义对各选项分析判断即可.
【详解】
解:A、是最简二次根式,不合题意,故本选项错误;
B、是最简二次根式,不合题意,故本选项错误;
C、因为=2,所以不是最简二次根式,符合题意,故本选项正确;
D、是最简二次根式,不合题意,故本选项错误;
故选C.
本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或.
【解析】
如图1,当P在AB上,Q在AD上时,根据题意得到,连接AC,根据正方形的性质得到,,求得,推出是等腰直角三角形,得到,根据等腰直角三角形的性质即可得到结论,如图2,当P在BC上,Q在DC上时,则,同理,.
【详解】
∵点P,Q同时从点A出发,以相同的速度分别沿A→B→C和A→D→C的路线运动,
∴如图1,当P在AB上,Q在AD上时,则AQ=AP,连接AC,
∵四边形ABCD是正方形,
∴∠DAB=90°,AC⊥BD,
∴ACAB=4.
∵AQ=AP,∴△APQ是等腰直角三角形,
∴∠AQP=∠QAM=45°,∴AM⊥AC,
∵PQcm,∴AMPQ,∴CM=AC=AM;
如图2,当P在BC上,Q在DC上时,则CQ=CP,同理,CM,
综上所述:点C到PQ的距离为或,
故答案为:或.
本题考查了正方形的性质,等腰直角三角形的性质,正确的作出图形是解题的关键.
10、1
【解析】
根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而求得其周长.
【详解】
解:在Rt△ABC中,
∵AC=6,AB=8,
∴BC=10,
∵E是BC的中点,
∴AE=BE=5,
∴∠BAE=∠B,
∵∠FDA=∠B,
∴∠FDA=∠BAE,
∴DF∥AE,
∵D、E分别是AB、BC的中点,
∴DE∥AC,DE=AC=3,
∴四边形AEDF是平行四边形
∴四边形AEDF的周长=2×(3+5)=1.
故答案为:1.
本题考查三角形中位线定理的运用,熟悉直角三角形的性质、等腰三角形的判定以及平行四边形的判定.熟练运用三角形的中位线定理和直角三角形的勾股定理是解题的关键.
11、
【解析】
首先根据勾股定理逆定理可判定此三角形是直角三角形,然后再计算面积即可.
【详解】
解:∵()2+12=3=()2,
∴这个三角形是直角三角形,
∴面积为:×1×=,
故答案为:.
考查了二次根式的应用以及勾股定理逆定理,关键是正确判断出三角形的形状.
12、(-1,1)
【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.
【详解】
解:将点向右平移1个单位,再向下平移2个单位得到点,
则点的坐标为(-1,1).
故答案为(-1,1).
本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
13、x>1
【解析】
观察函数图象得到即可.
【详解】
解:由图象可得:当x>1时,kx+b>2,
所以不等式kx+b>2的解集为x>1,
故答案为:x>1.
本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
三、解答题(本大题共5个小题,共48分)
14、(1)证明见解析;(2)矩形,理由见解析;
【解析】
(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;
(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴BO=DO,AO=OC,
∵AE=CF,
∴AO-AE=OC-CF,
即:OE=OF,
在△BOE和△DOF中,
∴△BOE≌△DOF(SAS);
(2)矩形,
证明:∵BO=DO,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴平行四边形BEDF是矩形.
此题考查平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解题的关键.
15、(1)甲每小时加工50个零件,则乙每小时加工40个零件;(2)2小时.
【解析】
(1)主要利用甲加工150个零件所用的时间与乙加工120个零件所用的时间相等,建立等式关系,即可求解,
(2)乙最多可以耽搁多长时间,这是一个不等式,把乙的完成的工作量+甲完成的工作量≥1000,
【详解】
解:(1)设甲每小时加工x个零件,则乙每小时加工(x﹣10)个零件,
根据题意,得:=,
解得:x=50,
经检验x=50是分式方程的解,
答:甲每小时加工50个零件,则乙每小时加工40个零件;
(2)设乙耽搁的时间为x小时,
根据题意,得:50x+(50+40)(12﹣x)≥1000,
解得:x≤2,
答:乙最多可以耽搁2小时.
本题主要考查分式方程和一元一次不等式的实际应用
16、B
【解析】
根据矩形的性质解答即可.
【详解】
解:∵矩形的对角线线段,四个角是直角,对角线互相平分,
∴选项A、C、D正确,
故选:B.
本题考查矩形的性质,解题的关键是记住矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等; ⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.
17、,1
【解析】
现将括号内的式子通分,再因式分解,然后约分,化简后将符合题意的值代入即可.
【详解】
原式
选时,原式
此题考查分式的化简求值、一元一次不等式组的整数解,解题关键在于取合适的整数值求值时,要特注意原式及化简过程中的每一步都有意义.
18、(1)A城和B城分别有200吨和300吨肥料;(2)从A城运往D乡200吨,从B城运往C乡肥料240吨,运往D乡60吨时,运费最少,最少运费是10040元;(3)当0<a<4时, A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;当a=4时,在0≤x≤200范围内的哪种调运方案费用都一样;当4<a<6时, A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【解析】
【分析】(1)根据A、B两城共有肥料500吨,其中A城肥料比B城少100吨,列方程或方程组得答案;
(2)设从A城运往C乡肥料x吨,用含x的代数式分别表示出从A运往运往D乡的肥料吨数,从B城运往C乡肥料吨数,及从B城运往D乡肥料吨数,根据:运费=运输吨数×运输费用,得一次函数解析式,利用一次函数的性质得结论;
(3)列出当A城运往C乡的运费每吨减少a(0<a<6)元时的一次函数解析式,利用一次函数的性质讨论,得结论.
【详解】(1)设A城有化肥a吨,B城有化肥b吨,
根据题意,得,
解得,
答:A城和B城分别有200吨和300吨肥料;
(2)设从A城运往C乡肥料x吨,则运往D乡(200﹣x)吨,
从B城运往C乡肥料(240﹣x)吨,则运往D乡(60+x)吨,
设总运费为y元,根据题意,
则:y=20x+25(200﹣x)+15(240﹣x)+24(60+x)=4x+10040,
∵,∴0≤x≤200,
由于函数是一次函数,k=4>0,
所以当x=0时,运费最少,最少运费是10040元;
(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,
所以y=(20﹣a)x+25(200﹣x)+15(240﹣x)+24(60+x)=(4﹣a)x+10040,
当4﹣a>0时,即0<a<4时,y随着x的增大而增大,∴当x=0时,运费最少,A城200吨肥料都运往D乡,B城240吨运往C乡,60吨运往D乡;
当4-a=0时,即a=4时,y=10040,在0≤x≤200范围内的哪种调运方案费用都一样;
当4﹣a<0时,即4<a<6时,y随着x的增大而减小,∴当x=240时,运费最少,此时A城200吨肥料都运往C乡,B城40吨运往C乡,260吨运往D乡.
【点睛】本题考查了二元一次方程组的应用、不等式组的应用、一次函数的应用等,弄清题意、根据题意找准等量关系、不等关系列出方程组,列出一次函数解析式是关键.注意(3)小题需分类讨论.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、1.
【解析】
先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.
【详解】
解:设Rt△ABC的三边分别为a、b、c,
∴S1=a2=25,S2=b2,S3=c2=9,
∵△ABC是直角三角形,
∴c2+b2=a2,即S3+S2=S1,
∴S2=S1-S3=25-9=16,
∴BC=1,
故答案为:1.
本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.
20、<.
【解析】
试题分析:∵正比例函数的,∴y随x的增大而增大.
∵,∴y1<y1.
考点:正比例函数的性质.
21、
【解析】
先证明EFGH是平行四边形,再根据菱形的性质求解即可.
【详解】
如图1所示,连接AC,
∵E、F、G、H分别是四边形ABCD边的中点,
∴HE∥AC,HE=AC,GF∥AC,GF=AC,
∴HE=GF且HE∥GF;
∴四边形EFGH是平行四边形. 连接BD,如图2所示:
若四边形EFGH成为菱形,
则EF=HE,
由(1)得:HE=AC,
同理:EF=BD,
∴AC=BD;
故答案为:AC=BD.
本题考查了平行四边形的判定、中点四边形、菱形的性质、三角形中位线定理;熟练掌握三角形中位线定理是解决问题的关键.
22、y=-2x+1
【解析】
分析:由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y-y0=k(x-x0)求得解析式即可.
详解:∵直线AB是直线y=-2x平移后得到的,
∴直线AB的k是-2(直线平移后,其斜率不变)
∴设直线AB的方程为y-y0=-2(x-x0) ①
把点(m,n)代入①并整理,得
y=-2x+(2m+n) ②
∵2m+n=1 ③
把③代入②,解得y=-2x+1
即直线AB的解析式为y=-2x+1.
点睛:本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.
23、1
【解析】
将△BCD绕点B逆时针旋转60°得到△ABD',根据已知条件可以得到△BDD'是等边三角形,△ADD'是直角三角形,即可求解.
【详解】
将△BCD绕点B逆时针旋转60°得到△ABD',
∴BD=BD',AD'=CD,
∴∠DBD'=60°,
∴△BDD'是等边三角形,
∴∠BDD'=60°,
∵BD=1,DC=2,AD=,
∴DD'=1,AD'=2,
在△ADD'中,AD'2=AD2+DD'2,
∴∠ADD'=90°,
∴∠ADB=60°+90°=1°,
故答案为1.
本题考查旋转的性质,等边三角形和直角三角形的性质;能够通过图形的旋转构造等边三角形和直角三角形是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)观察发现:;(2)能力提升:函数的图象可由反比例函数的图象向左平移2个单位平移得到;(3)应用:见解析,.
【解析】
(1)根据函数的图象,可得出结论;(2)根据平移的规律即可求解;(3)根据函数图象即可求得.
【详解】
解:(1)
(2)函数的图象可由反比例函数的图象向左平移2个单位平移得到.
(3)画图如图
本题考查了函数的图象与性质,解题的关键是理解题意,灵活运用所学知识解决问题.
25、 (1)50;(2)见解析;(3)72°;(4)96人.
【解析】
(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;
(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;
(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;
(4)利用样本估计总体进而利用“优秀”所占比例求出即可.
【详解】
(1)由扇形统计图和条形统计图可得:
参加这次跳绳测试的共有:20÷40%=50(人);
故答案为:50;
(2) 由(1)的优秀的人数为:50−3−7−10−20=10人,
(3) “中等”部分所对应的圆心角的度数是:×360°=72°,
故答案为:72°;
(4)全年级优秀人数为:(人).
此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.
26、(1)x=-10;(2)2(x+2)(x-2)
【解析】
(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;
(2)原式先提取公因式,再利用平方差公式分解即可.
【详解】
解:(1)去分母得:2x-4=3x+6,解得:x=-10,
经检验x=-10是分式方程的解,
∴原方程的解为:x=-10;
(2)原式=.
此题考查了解分式方程以及提公因式法与公式法的综合运用,熟练掌握分式方程的解法和分解因式的方法是解本题的关键.
题号
一
二
三
四
五
总分
得分
…
-6
-5
-4
-3
-1
0
1
2
…
…
-1.5
-2
-3
-6
6
3
2
1.5
…
安徽省宿州市第五中学2025届九上数学开学学业质量监测试题【含答案】: 这是一份安徽省宿州市第五中学2025届九上数学开学学业质量监测试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省宿州市时村中学数学九上开学检测试题【含答案】: 这是一份2025届安徽省宿州市时村中学数学九上开学检测试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届安徽省宿州市宿城一中学数学九上开学学业质量监测试题【含答案】: 这是一份2025届安徽省宿州市宿城一中学数学九上开学学业质量监测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。