


安徽省合肥新康中学2024-2025学年数学九上开学学业水平测试试题【含答案】
展开这是一份安徽省合肥新康中学2024-2025学年数学九上开学学业水平测试试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)已知分式方程,去分母后得( )
A.B.
C.D.
2、(4分)在一个四边形的所有内角中,锐角的个数最多有( )
A.4个B.3个C.2个D.1个
3、(4分)下列命题是真命题的是( )
A.平行四边形的对角线互相平分且相等
B.任意多边形的外角和均为360°
C.邻边相等的四边形是菱形
D.两个相似比为1:2的三角形对应边上的高之比为1:4
4、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()
A.3B.4C.5D.6
5、(4分)为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:
则关于这些同学的每天锻炼时间,下列说法错误的是( )
A.众数是60B.平均数是21C.抽查了10个同学D.中位数是50
6、(4分)如图,∠BAC=90°,四边形ADEB、BFGC、CHIA均为正方形,若 S四边形ADEB=6,S四边形BFGC=18,四边形CHIA的周长为( )
A.4B.8C.12D.8
7、(4分)一次函数y=ax+b,b>0,且y随x的增大而减小,则其图象可能是( )
A.B.C.D.
8、(4分)某校九年级班全体学生2016年初中毕业体育考试的成绩统计如表:
根据表中的信息判断,下列结论中错误的是
A.该班一共有40名同学B.该班学生这次考试成绩的众数是25分
C.该班学生这次考试成绩的中位数是25分D.该班学生这次考试成绩的平均数是25分
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)我国古代数学著作《九章算术》有一个问题:一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,1丈=10尺,那么折断处离地面的高度是__________尺.
10、(4分)如图,在中,和的角平分线相交于点,若,则的度数为______.
11、(4分)计算 +( )2=________.
12、(4分)如图所示,已知ABCD中,下列条件:①AC=BD;②AB=AD;③∠1=∠2;④AB⊥BC中,能说明ABCD是矩形的有______________(填写序号)
13、(4分)某学校八年级班有名同学,名男生的平均身高为名女生的平均身高,则全班学生的平均身高是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)已知函数的图象经过第四象限的点B(3,a),且与x轴相交于原点和点A(7,0)
(1)求k、b的值;
(2)当x为何值时,y>﹣2;
(3)点C是坐标轴上的点,如果△ABC恰好是以AB为腰的等腰三角形,直接写出满足条件的点C的坐标
15、(8分)如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.
(1)求证:四边形ABEF为菱形;
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
16、(8分)计算:
(1)
(2)
(3)
(4).
17、(10分)如图,矩形中,对角线、交于点,以、为邻边作平行四边形,连接
(1)求证:四边形是菱形
(2)若,,求四边形的面积
18、(10分)某学校欲招聘一名新教师,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制)如下表所示:
(1)根据三项得分的平均分,从高到低确定应聘者的排名顺序;
(2)学校规定:笔试、面试、才艺得分分别不得低于80分、80分、70分,并按照60%、30%、10%的比例计入个人总分,请你说明谁会被录用?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)要使代数式有意义,则的取值范围是________.
20、(4分)如图,在平行四边形ABCD中,CE⊥AB且E为垂足,如果∠A=125°,则∠BCE=____.
21、(4分)直线y=2x+6经过点(0,a),则a=_____.
22、(4分)如图所示,折叠矩形的一边 AD,使点 D 落在边 BC 的点 F处,已知 AB=8cm,BC=10cm,则 EC 的长为_____cm.
23、(4分)若一个多边形的每一个内角都是144°,则这个多边形的是边数为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
25、(10分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.
26、(12分)如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.
(1)在这个变化中,自变量、因变量分别是 、 ;
(2)当点P运动的路程x=4时,△ABP的面积为y= ;
(3)求AB的长和梯形ABCD的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
两边都乘以最简公分母(x+2)(x-2)即可得出正确选项.
【详解】
解:方程两边都乘以最简公分母(x+2)(x-2),
得:x(x+2)-1=(x+2)(x-2),
即x(x+2)-1=x2-4,
故选:A.
本题主要考查解分式方程,准确找到最简公分母是解题的关键.
2、B
【解析】
根据四边形的外角和等于360°可判断出外角中最多有三个钝角,而外角与相邻的内角是互补的,因此,四边形的内角中最多有3个锐角.
【详解】
因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,
多边形的内角中就最多有3个锐角.
故选:B.
本题考查了四边形的外角和定理和外角与内角的关系,把内角问题转化成外角问题是解答的关键.
3、B
【解析】
利用平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质判断后即可确定正确的选项.
【详解】
解:A、平行四边形的对角线互相平分但不一定相等,故错误,是假命题;
B、任意多边形的外角和均为360°,正确,是真命题;
C、邻边相等的平行四边形是菱形,故错误,是假命题;
D、两个相似比为1:2的三角形对应边上的高之比为1:2,故错误,是假命题,
故选:B.
本题考查了命题的判断,涉及平行四边形的性质、多边形的外角和、菱形的判定及相似三角形的性质等知识点,掌握基本知识点是解题的关键.
4、C
【解析】
先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8-x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x的值,进而得出DE的长.
【详解】
解:∵Rt△DC′B由Rt△DBC翻折而成,
∴CD=C′D=AB=8,∠C=∠C′=90°,
设DE=x,则AE=8-x,
∵∠A=∠C′=90°,∠AEB=∠DEC′,
∴∠ABE=∠C′DE,
在Rt△ABE与Rt△C′DE中,
∴Rt△ABE≌Rt△C′DE(ASA),
∴BE=DE=x,
在Rt△ABE中,AB2+AE2=BE2,
∴42+(8-x)2=x2,
解得:x=1,
∴DE的长为1.
故选C.
本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.
5、B
【解析】
根据众数、中位数和平均数的定义分别对每一项进行分析即可.
【详解】
解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;
B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;
C、调查的户数是2+3+4+1=10,故C选项说法正确;
D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;
故选:B.
此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.
6、B
【解析】
外围正方形的面积就是斜边和一直角边的平方,实际上是求另一直角边的平方,用勾股定理即可解答.
【详解】
解:根据勾股定理我们可以得出:
AB2+AC2=BC2
S正方形ADEB= AB2=6,S正方形BFGC= BC2=18,
S正方形CHIA= AC2=18-6=12,
∴AC=,
∴四边形CHIA的周长为==8
故选:B.
本题主要考查了正方形的面积公式和勾股定理的应用.只要搞清楚直角三角形的斜边和直角边本题就容易多了.
7、C
【解析】
根据题意,判断a<0,b>0,由一次函数图象的性质可得到直线的大概位置.
【详解】
因为,一次函数y=ax+b,b>0,且y随x的增大而减小,
所以,a<0,
所以,直线经过第一、二、四象限.
故选:C
本题考核知识点:一次函数的图象. 解题关键点:熟记一次函数的图象.
8、D
【解析】
结合表格根据众数、平均数、中位数的概念即可求解.
【详解】
该班人数为:,
得25分的人数最多,众数为25,
第20和21名同学的成绩的平均值为中位数,中位数为:,
平均数为:.
故错误的为D.
故选:D.
本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、4.1
【解析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面的高度是x尺,则斜边为(10-x)尺.利用勾股定理解题即可.
【详解】
解:1丈=10尺,
设折断处离地面的高度为x尺,则斜边为(10-x)尺,
根据勾股定理得:x2+32=(10-x)2
解得:x=4.1.
答:折断处离地面的高度为4.1尺.
故答案为:4.1.
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
10、70°
【解析】
根据三角形的内角和等于180°,求出∠OBC+∠OCB,再根据角平分线的定义求出∠ABC+∠ACB,然后利用三角形的内角和等于180°,列式计算即可得解.
【详解】
解:∵,
∴∠OBC+∠OCB=180°-125°=55°,
∵BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=110°,
∴∠A=180°-110°=70°;
故答案为:70°.
此题考查了三角形的内角和定理,角平分线的定义,整体思想的利用是解题的关键.
11、6
【解析】
根据二次根式的性质计算.
【详解】
原式=3+3
=6.
故答案为:6.
考查二次根式的运算,掌握是解题的关键.
12、①④
【解析】
矩形的判定方法由:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形,由此可得能使平行四边形ABCD是矩形的条件是①和④.
13、
【解析】
只要运用求平均数公式:即可求得全班学生的平均身高.
【详解】
全班学生的平均身高是:.
故答案为:1.
本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)x<2或x>时,有y>﹣2;(3)点C的坐标为(2,0)或(12,0)或(-1,0)或(0,1)或(0,-7).
【解析】
(1)利用待定系数法可得k和b的值;
(2)将y=-2代入函数中,分别计算x的值,根据图象可得结论;
(3)分两种情况画图,以∠BAC和∠ABC为顶角,根据AB=5和对称的性质可得点C的坐标.
【详解】
(1)当x=3时,a=-3,
∴B(3,-3),
把B(3,-3)和点A(7,0)代入y=kx+b中,
得:,解得:;
(2)当y=-2时,-x=-2,x=2,
,
解得,,
如图1,由图象得:当x<2或x>时,y>-2;
(3)∵B(3,-3)和点A(7,0),
∴AB==5,
①以∠BAC为顶角,AB为腰时,如图2,AC=AB=5,
∴C(2,0)或(12,0);
②以∠ABC为顶角,AB为腰时,如图3,以B为圆心,以AB为腰画圆,当△ABC是等腰三角形时,此时存在三个点C,
得C3(-1,0),
由C3与C4关于直线 y=-x对称得:C4(0,1)
由C5与点A关于直线y=-x对称得:C5(0,-7)
综上,点C的坐标为(2,0)或(12,0)或(-1,0)或(0,1)或(0,-7).
本题是分段函数与三角形的综合问题,考查了待定系数法求函数解析式以及等腰三角形的判定,同时还要注意运用数形结合与分类讨论的思想解决问题.
15、(1)见解析;(2)1.
【解析】
(1)先证四边形ABEF为平行四边形,继而再根据AB=AF,即可得四边形ABEF为菱形;
(2)由四边形ABEF为菱形可得AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,求出AO的长即可得答案.
【详解】
(1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠FAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=FA,
∴四边形ABEF为平行四边形,
∵AB=AF,
∴四边形ABEF为菱形;
(2)∵四边形ABEF为菱形,
∴AE⊥BF,BO=FB=3,AE=2AO,
在Rt△AOB中,AO==4,
∴AE=2AO=1.
本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.
16、(1);(2);(3);(4).
【解析】
(1)先进行二次根式的乘除运算,然后合并即可;
(2)先把各二次根式化简为最简二次根式,然后去括号合并即可;
(3)利用平方差公式和完全平方公式计算;
(4)利用完全平方公式和分母有理化得到原式,然后去括号后合并即可.
【详解】
解:(1)原式
;
(2)原式
;
(3)原式
;
(4)原式
.
故答案为(1);(2);(3);(4).
本题考查二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.
17、(1)见解析;(2)S四边形ADOE =.
【解析】
(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.
(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=.根据面积公式SΔADC,即可求解.
【详解】
(1)证明:∵矩形ABCD,
∴OA=OB=OC=OD.
∵平行四边形ADOE,
∴OD∥AE,AE=OD.
∴AE=OB.
∴四边形AOBE为平行四边形.
∵OA=OB,
∴四边形AOBE为菱形.
(2)解:∵菱形AOBE,
∴∠EAB=∠BAO.
∵矩形ABCD,
∴AB∥CD.
∴∠BAC=∠ACD,∠ADC=90°.
∴∠EAB=∠BAO=∠DCA.
∵∠EAO+∠DCO=180°,
∴∠DCA=60°.
∵DC=2,
∴AD=.
∴SΔADC=.
∴S四边形ADOE =.
考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.
18、(1)排名顺序为:甲、丙、乙;(2)丙会被录用.
【解析】
(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;
(2)先算出甲、乙、丙的总分,根据公司的规定先排除甲,再根据丙的总分最高,即可得出丙被录用
【详解】
(1),,
∴ ∴排名顺序为:甲、丙、乙.
(2)由题意可知,只有甲的笔试成绩只有79分,不符合规定
乙的成绩为:
丙的成绩为:
∵甲先被淘汰,按照学校规定,丙的成绩高于乙的成绩,乙又被淘汰
∴丙会被录用.
此题考查加权平均数,掌握运算法则是解题关键
一、填空题(本大题共5个小题,每小题4分,共20分)
19、且
【解析】
分式的分母不等于零时分式有意义,且还需满足被开方数大于等于零的条件,根据要求列式计算即可.
【详解】
∵代数式有意义,
∴,且,
∴且,
故答案为:且.
此题考查分式有意义的条件,二次根式被开方数的取值范围的确定,正确理解题意列出不等式是解题的关键.
20、1
【解析】
分析:根据平行四边形的性质和已知,可求出∠B,再进一步利用直角三角形的性质求解即可.
详解:∵AD∥BC,
∴∠A+∠B=180°,
∴∠B=180°-125°=55°,
∵CE⊥AB,
∴在Rt△BCE中,∠BCE=90°-∠B=90°-55°=1°.
故答案为1.
点睛:本题主要考查了平行四边形的性质,运用平行四边形对边平行的性质,得到邻角互补的结论,这是运用定义求四边形内角度数的常用方法.
21、6
【解析】
直接将点(0,a)代入直线y=2x+6,即可得出a=6.
【详解】
解:∵直线y=2x+6经过点(0,a),将其代入解析式
∴a=6.
此题主要考查一次函数解析式的性质,熟练掌握即可得解.
22、2
【解析】
试题解析:∵D,F关于AE对称,所以△AED和△AEF全等,
∴AF=AD=BC=10,DE=EF,
设EC=x,则DE=8-x.
∴EF=8-x,
在Rt△ABF中,BF==6,
∴FC=BC-BF=1.
在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,
即:x2+12=(8-x)2,解得x=2.
∴EC的长为2cm.
考点:1.勾股定理;2.翻折变换(折叠问题).
23、1
【解析】
先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.
【详解】
180°-144°=36°,
360°÷36°=1,
∴这个多边形的边数是1,
故答案为:1.
本题考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.
二、解答题(本大题共3个小题,共30分)
24、(1)见解析;(2)见解析.
【解析】
(1)根据角平分线的作图方法作图即可;
(2)由题意易证△ADE≌△CBF推出DE=BF.
【详解】
(1)解:以B为圆心、适当长为半径画弧,交AB、BC于M、N两点,分别以M、N为圆心、大于MN长为半径画弧,两弧相交于点P,过B、P作射线BF交AC于F.
(2)证明如下:∵AD∥BC,∴∠DAC=∠C.
∵BF平分∠ABC,∴∠ABC=2∠FBC,
又∵∠ABC=2∠ADG,∴∠D=∠FBC,
在△ADE与△CBF中,,
∴△ADE≌△CBF(ASA),
∴DE=BF.
本题考查的是全等三角形的判定定理以及基本作图的有关知识,难度一般.
25、高铁列车平均速度为300km/h.
【解析】
设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,利用高铁列车行驶时间比原特快列车行驶时间缩短了3小时,这一等量关系列出方程解题即可
【详解】
设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,
由题意得: +3=,
解得:x=100,
经检验:x=100是原方程的解,
则3×100=300(km/h);
答:高铁列车平均速度为300km/h.
本题考查分式方程的简单应用,本题关键在于读懂题意列出方程,特别注意分式方程求解之后需要检验
26、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面积=1.
【解析】
(1)依据点P运动的路程为x,△ABP的面积为y,即可得到自变量和因变量;
(2)依据函数图象,即可得到点P运动的路程x=4时,△ABP的面积;
(3)根据图象得出BC的长,以及此时三角形ABP面积,利用三角形面积公式求出AB的长即可;由函数图象得出DC的长,利用梯形面积公式求出梯形ABCD面积即可.
【详解】
(1)∵点P运动的路程为x,△ABP的面积为y,∴自变量为x,因变量为y.
故答案为x,y;
(2)由图可得:当点P运动的路程x=4时,△ABP的面积为y=2.
故答案为2;
(3)根据图象得:BC=4,此时△ABP为2,∴AB•BC=2,即×AB×4=2,解得:AB=8;
由图象得:DC=9﹣4=5,则S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.
本题考查了动点问题的函数图象,弄清函数图象上的信息是解答本题的关键.
题号
一
二
三
四
五
总分
得分
批阅人
每天锻炼时间(分钟)
20
40
60
90
学生数
2
3
4
1
成绩分
15
19
22
24
25
28
30
人数人
2
5
6
6
8
7
6
应试者
面试成绩
笔试成绩
才艺
甲
83
79
90
乙
85
80
75
丙
80
90
73
相关试卷
这是一份安徽省合肥市长丰县2025届数学九上开学学业水平测试试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省合肥市滨湖区寿春中学2024-2025学年数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份安徽省合肥市滨湖区寿春中学2024-2025学年数学九上开学学业水平测试试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。