2025届浙江省绍兴市上虞实验中学数学九上开学调研模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列函数中,表示y是x的正比例函数的是( )
A.y=﹣0.1xB.y=2x2C.y2=4xD.y=2x+1
2、(4分)已知一次函数y = 2x +b ,其中b<0,函数图象可能是( )
A.AB.BC.CD.D
3、(4分)在△ABC中,已知∠A、∠B、∠C的度数之比是1:1:2,BC=4,△ABC的面积为( )
A.2B.C.4D.8
4、(4分)某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是( )
A.4B.3.5C.5D.3
5、(4分)若分式有意义,则实数x的取值范围是( )
A.B.C.D.
6、(4分)使式子有意义的x的取值范围是( )
A.x≥0B.x>0C.x>3D.x≥3
7、(4分)某校七年级体操比赛中,各班代表队得分如下(单位:分):,则各班代表队得分的中位数和众数分别是( )
A.7,7B.7,8C.8,7D.8,8
8、(4分)下列四个数中,大于而又小于的无理数是
A.B.C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知Rt△ABC中,AB=3,AC=4,则BC的长为__________.
10、(4分)在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。
11、(4分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
12、(4分)直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.
13、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于 的二元一次方程组的解是_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)计算:(1)3×(1+)-;(2)-2×|-1|-
15、(8分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
设购买银杏树苗x棵,到两家购买所需费用分别为元、元
(1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
(2)当时,分别求出、与x之间的函数关系式;
(3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
16、(8分)已知一次函数y=﹣x+1.
(1)在给定的坐标系中画出该函数的图象;
(2)点M(﹣1,y1),N(3,y2)在该函数的图象上,试比较y1与y2的大小.
17、(10分)实践与探究
如图,在平面直角坐标系中,直线交轴于点,交轴于点,点坐标为。直线与直线相交于点,点的横坐标为1。
(1)求直线的解析式;
(2)若点是轴上一点,且的面积是面积的,求点的坐标;
18、(10分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC.
(1)求C点的坐标;
(2)如图1,在平面内是否存在一点H,使得以A、C、B、H为顶点的四边形为平行四边形?若存在,请直接写出H点坐标;若不存在,请说明理由;
(3)如图1点M(1,﹣1)是第四象限内的一点,在y轴上是否存在一点F,使得|FM﹣FC|的值最大?若存在,请求出F点坐标;若不存在,请说明理由
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,一块矩形的土地被分成4小块,用来种植4种不同的花卉,其中3块面积分别是,,,则第四块土地的面积是____.
20、(4分)若不等式组的解集是,则m的值是________.
21、(4分)点A为数轴上表示实数的点,将点A沿数轴平移3个单位得到点B,则点B表示的实数是________.
22、(4分)某工厂为满足市场需要,准备生产一种大型机械设备,已知生产一台这种大型机械设备需,,三种配件共个,且要求所需配件数量不得超过个,配件数量恰好是配件数量的倍,配件数量不得低于,两配件数量之和.该工厂准备生产这种大型机械设备台,同时决定把生产,,三种配件的任务交给一车间.经过试验,发现一车间工人的生产能力情况是:每个工人每天可生产个配件或个配件或个配件.若一车间安排一批工人恰好天能完成此次生产任务,则生产一台这种大型机械设备所需配件的数量是_______个.
23、(4分)若点A(x1,y1)和点B(x1+1,y2)都在一次函数y=2018x-2019的图象上,则y1_______y2(选择“>”、“<”或“=”填空).
二、解答题(本大题共3个小题,共30分)
24、(8分)某校八(3)班全体同学参加植树苗活动,下面是今年3月份该班同学植树苗情况的扇形统计图和不完整的条形统计图:
请根据以上统计图中的信息解答下列问题.
(1)该班同学共________人,植树苗3株的人数为________人;
(2)该班同学植树苗株数的中位数是________;
(3)小明用以下方法计算该班同学平均植树苗的株数是:(株),根据你所学知识判断小明的计算是否正确,若不正确,请计算出正确的结果.
25、(10分)已知,正方形ABCD中,点E为BC边上任意一点(点E不与B,C重合),点F在线段AE上,过点F的直线,分别交AB、CD于点M、N.
(1)如图,求证:;
(2)如图,当点F为AE中点时,连接正方形的对角线BD,MN与BD交于点G,连接BF,求证:;
(3)如图,在(2)的条件下,若,,求BM的长度.
26、(12分)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:
设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.
(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;
(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
A选项:y=-0.1x,符合正比例函数的含义,故本选项正确.
B选项:y=2x2,自变量次数不为1,故本选项错误;
C选项:y2=4x,y不是x的函数,故本选项错误;
D选项:y=2x+1是一次函数,故本选项错误;
故选A.
2、A
【解析】
对照该函数解析式与一次函数的一般形式y=kx+b (k,b为常数,k≠0)可知,k=2. 故k>0,b<0.
A选项:由图象知,k>0,b<0,符合题意. 故A选项正确.
B选项:由图象知,k<0,b<0,不符合题意. 故B选项错误.
C选项:由图象知,k>0,b>0,不符合题意. 故C选项错误.
D选项:由图象知,k<0,b>0,不符合题意. 故D选项错误.
故本题应选A.
点睛:
本题考查了一次函数的图象与性质. 一次函数解析式的系数与其图象所经过象限的关系是重点内容,要熟练掌握. 当k>0,b>0时,一次函数的图象经过一、二、三象限;当k>0,b<0时,一次函数的图象经过一、三、四象限;当k<0,b>0时,一次函数的图象经过一、二、四象限;当k<0,b<0时,一次函数的图象经过二、三、四象限.
3、D
【解析】
根据比例设∠A=k,∠B=k,∠C=2k,然后根据三角形的内角和等于180°列方程求出k的值,从而得到三个内角的度数,再根据直角三角形30°角所对的直角边等于斜边的一半求出AB,利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解.
【详解】
解:设∠A=k,∠B=k,∠C=2k,
由三角形的内角和定理得,k+k+2k=180°,
解得k=45°,
所以,∠A=45°,∠B=45°,∠C=90°,
∴AC=BC=4,,
所以,△ABC的面积=.
故选:D.
本题考查的知识点是直角三角形的性质和三角形的内角和定理,解题关键是利用“设k法”求解三个内角的度数.
4、A
【解析】
一组数据中出现次数最多的数据叫做众数,依此求解即可.
【详解】
在这一组数据中4出现了3次,次数最多,故众数是4.
故选:A.
考查众数的概念,掌握众数的概念是解题的关键.
5、C
【解析】
根据分式有意义的条件即可解答.
【详解】
∵分式有意义,
∴x+4≠0,
∴.
故选C.
本题考查了分式有意义的条件,熟知分式有意义的条件(分式有意义,分母不为0)是解决问题的关键.
6、D
【解析】
根据二次根式有意义的条件:被开方数是非负数,列不等式求解.
【详解】
解:∵式子有意义,
∴x-3≥0,
解得:x≥3,
故选D..
本题考查了二次根式的意义的条件.关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义.
7、A
【解析】
根据众数与中位数的定义分别进行解答即可.
【详解】
由于共有7个数据,则中位数为第4个数据,即中位数为7,
这组数据中出现次数最多的是7分,一共出现了3次,则众数为7,
故选:A.
考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.
8、B
【解析】
根据无理数的大概值和1,2比较大小,首先计算出每个选项的大概值.
【详解】
A 选项不是无理数;
B 是无理数且
C 是无理数但
D 是无理数但
故选B.
本题主要考查无理数的比较大小,关键在于估算结果.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、或1.
【解析】
根据勾股定理来进行解答即可,本题需要分两种情况进行计算,即BC为斜边和BC为直角边.
【详解】
根据勾股定理可得:AB=
或AB=,
故答案为1或.
本题主要考查的是利用勾股定理求边长的问题,属于基础问题.在利用勾股定理时一定要注意所求的边为直角边还是斜边.
10、0【解析】
已知点P(a-1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.
【详解】
∵点P(a-1,a)是第二象限内的点,
∴a-1<0且a>0,
解得:0<a<1.
故答案为:0<a<1.
本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+).
11、2或.
【解析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而可求得答案.
【详解】
解:E是BC的中点,
BE=CE=BC=12=6,
①当Q运动到E和C之间, 设运动时间为t, 则AP=t, DP=AD-AP=4-t, CQ=2t,EQ=CE-CQ=6-2t
t=6-2t,
解得: t=2;
②当Q运动到E和B之间,设运动时间为t,则AP=t, DP=AD-AP=4-t, CQ=2t,
EQ=CQ-CE=2t-6,
t=2t-6,
解得: t=6(舍),
③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,
则AP=4-(t-4)=8-t, EQ=2t-6,
8-t=2t-6,,
当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.
故答案为: 2或.
本题主要考查平行四边形的性质及解一元一次方程.
12、-3, 1
【解析】
根据两直线平行,得到k=-3,然后把(1,2)代入y=-3x+b中,可计算出b的值.
【详解】
∵直线y=kx+b与直线y=-3x+4平行,
∴k=-3,
∵直线y=-3x+b过点(1,2),
∴1×(-3)+b=2,
∴b=1.
故答案为:-3;1.
本题主要考查两平行直线的函数解析式的比例系数关系,掌握若两条直线是平行的关系,那么它们的函数解析式的自变量系数相同,是解题的关键.
13、x=1,y=1
【解析】
由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
【详解】
解:函数y=ax+b和y=kx的图象交于点P(1,1)
即x=1,y=1同时满足两个一次函数的解析式.
所以,方程组的解是 ,
故答案为x=1,y=1.
本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
三、解答题(本大题共5个小题,共48分)
14、(1) ;(2).
【解析】
(1)先去括号,并把化简,然后合并同类二次根式即可;
(2)先去绝对值符号,再算乘法和乘方,然后合并化简即可.
【详解】
(1)原式=3+3-2=;
(2)原式=-2×(1-)-
=-2+-3
=.
本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.
15、 (1)610000元,640000元;(2),;(3)见解析.
【解析】
(1)由单价数量及可以得出购买树苗需要的费用;
(2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
(3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
【详解】
解:由题意,得.
元,
元;
故答案为;640000
当时,,,x为正整数,
当时,到两家购买所需费用一样;
时,甲家有优惠而乙家无优惠,所以到甲家购买合算;
当时,,解得,当时,到两家购买所需费用一样;
当y甲乙时,,
当时,到甲家购买合算;
当y甲乙时,,
当时,到乙家购买合算.
综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
16、(1)见解析;(2)y1>y2.
【解析】
(1)根据两点确定一条直线作出函数图象即可;
(2)根据y随x的增大而减小求解.
【详解】
(1)令y=0,则x=2
令x=0,则y=1
所以,点A的坐标为(2,0)
点B的坐标为(0,1)
画出函数图象如图:
;
(2)∵一次函数y=﹣x+1中,k=-<0,∴y随x的增大而减小
∵﹣1<3
∴y1>y2.
本题考查了一次函数图象上点的坐标特征,一次函数图象,熟练掌握一次函数与坐标轴的交点坐标的求解方法是解题的关键.
17、(1);(2)点的坐标为或
【解析】
(1)先求出C点坐标,再利用待定系数法确定函数关系式即可求解;
(2)先求出A点坐标,再过点作轴,垂足为点;过点作轴,垂足为点,设点的坐标为,根据三角形的面积即可列出式子求解;
【详解】
解:(1)∵点在上,且横坐标是1,
∴把代入中,得,
∴点的坐标为,
设直线的解析式为,将点的坐标代入得
解得
∴直线的解析式为;
(2)∵点是直线与轴的交点,
∴把代入中得,,∴点坐标为,
过点作轴,垂足为点;过点作轴,垂足为点,
由点的坐标为可得,,
设点的坐标为,
依题意得,,
即,
解得,,
∴点的坐标为或;
此题主要考查一次函数的图像,解题的关键是熟知一次函数的的性质及三角形的面积求解.
18、(1)(﹣6,﹣2);(2)见解析;(3)见解析.
【解析】
(1)证明△MAC≌△OBA(AAS),根据三角形全等时对应边相等可得C的坐标;
(2)根据平移规律可得三个H点的坐标;
(3)如图3,作点M(1,-1)关于y轴的对点M'(-1,-1),连接CF1、MF1,由于|FM-FC|≤CM,当C、M'、F三点共线时取等号,连接CM',与y轴交于点F即为所求,根据直线解析式,令x=0可得与y轴的交点F的坐标.
【详解】
解:(1)如图1,过C作CM⊥x轴于M点,
∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,
则∠MAC=∠OBA,
在△MAC和△OBA中,
,
∴△MAC≌△OBA(AAS),
∴CM=OA=2,MA=OB=4,
∴OM=OA+AM=2+4=6,
∴点C的坐标为(﹣6,﹣2)
(2)答:如图2,存在三个H点,
∵A(﹣2,0),B(0,﹣4),C(﹣6,﹣2),
∴根据B到A的平移规律可得C到H1的平移规律,则H1(﹣8,2),
同理得H2(﹣4,﹣6)、H3(4,﹣2)
(3)答:存在,F(0,﹣),
如图3,作点M(1,﹣1)关于y轴的对点M'(﹣1,﹣1),
设y轴上存在一点F1,连接CF1、M'F1,由于|FM﹣FC|≤CM',
当C、M'、F三点共线时取等号,
连接CM',与y轴交于点F即为所求,
设CM'的解析式为:y=kx+b,
把C(﹣6,﹣2)、M'(﹣1,﹣1)代入得,,
解得:,
∴,
当x=0时,y=﹣,
∴F(0,﹣).
本题考查四边形综合题、轴对称的最短路径问题、等腰直角三角形的性质和判定、三角形全等的性质和判定等知识,第3问有难度,确定点F的位置是关键,学会用平移的规律确定点的坐标,属于中考压轴题.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、54
【解析】
由矩形的面积公式可得20m2,30m2的两个矩形的长度比为2:3,即可求第四块土地的面积.
【详解】
解:∵20m2,30m2的两个矩形是等宽的,
∴20m2,30m2的两个矩形的长度比为2:3,
∴第四块土地的面积==54m2,
故答案为:54
本题考查了矩形的性质,熟练运用矩形的面积公式是本题的关键.
20、2
【解析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.
【详解】
解:,解得:,
∵不等式组的解集为:,
∴;
故答案为:2.
本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.
21、或
【解析】
根据点的坐标左移减右移加,可得答案.
【详解】
点A为数轴上表示的点,将点A在数轴上向左平移3个单位长度到点B,则点B所表示的实数为;
点A为数轴上表示的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为;
故答案为或.
此题考查数轴,解题关键在于掌握平移的性质.
22、1.
【解析】
设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意列不等式组可得 ;由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,由a,b,c都是正整数求解,即可得出答案.
【详解】
解:设生产一台这种大型机械设备需种配件x个,则需B种配件4x个,C种配件160-5x个,根据题意得
,解得,
由题意可知车间1天可生产一台这种大型机械设备,设每天生产,,三种配件的工人数分别是a,b,c,则
,解得 ,
因为a,b,c都是正整数,
所以a=1,b=2,c=2,
所以每天生产一台这种大型机械设备所需配件的数量是40×2=80(个),
这种大型机械设备台所需配件的数量是80×10=1(个).
故答案为:1.
本题考查一元一次不等式组的应用,本题难点在于根据题意列不等式组求出x的取值范围.解题的关键是解一元一次不等式组得出x的取值范围.
23、<
【解析】
先根据直线y=1018x-1019判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.
【详解】
∵直线y=1018x-1019,k=1018>0,
∴y随x的增大而增大,
又∵x1<x1+1,
∴y1<y1.
故答案为:<.
本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.
二、解答题(本大题共3个小题,共30分)
24、 (1)50,12;(2)2;(3)小明的计算不正确,正确的计算为2.4株
【解析】
(1)由植树苗2株的人数及其所占的百分比即可求出该班的人数,再减去植树苗1株、2株、4株、5株的人数可得植树苗3株的人数;
(2)根据中位数的定义即可求得;
(3)根据平均数的定义即可判断.
【详解】
解:(1)该班的人数为;植树苗3株的人数为;
(2)将植数苗的株数按从小到大排列,处于最中间位置的株数为2株,故该班同学植树苗株数的中位数是2;
(3)该班同学平均植树苗的株数应是总株数除以总人数,而不是总株数,5也不是总人数,所以小明的计算不正确.
正确的结果应为:株
本题考查了数据的处理,掌握中位数及平均数的定义是解题的关键.
25、(1)见解析;(2)见解析;(3).
【解析】
(1)由正方形的性质得出∠B=90°,得出∠BAE+∠AEB=90°,由垂直的性质得出∠BAE+∠AMN=90°,即可得出结论;
(2)连接AG、EG、CG,证明△ABG≌△CBG得出AG=CG,∠GAB=∠GCB,证出EG=CG,由等腰三角形的性质得出∠GEC=∠GCE,证出∠AGE=90°,由直角三角形斜边上的中线性质得出BF=AE,FG=AE,即可得出结论;
(3)过G作交AD于点P,交BC于点Q,证明DP=PG=2,连接ME,证明MN是AE的垂直平分线,得,,再证明得,得,进而得,中,由勾股定理得,代入相关数据,从而得出结论.
【详解】
(1)(1)证明:∵四边形ABCD是正方形,
∴∠B=90°,
∴∠BAE+∠AEB=90°,
∵MN⊥AE于F,
∴∠BAE+∠AMN=90°,
∴∠AEB=∠AMN;
(2)证明:连接AG、EG、CG,
∵四边形ABCD是正方形,
∴AB=BC,∠ABG=∠CBG=45°,∠ABE=90°,
在△ABG和△CBG中,
,
∴△ABG≌△CBG(SAS),
∴AG=CG,∠GAB=∠GCB,
∵MN⊥AE于F,F为AE中点,
∴AG=EG,
∴EG=CG,
∴∠GEC=∠GCE,
∴∠GAB=∠GEC,
∵∠GEB+∠GEC=180°,
∴∠GEB+∠GAB=180°,
∵四边形ABEG的内角和为360°,∠ABE=90°,
∴∠AGE=90°,
在Rt△ABE 和Rt△AGE中,AE为斜边,F为AE的中点,
∴BF=AE,FG=AE,
∴BF=FG;
(3)过G作交AD于点P,交BC于点Q,则 ,,
中,, ,
∴ ,
∴
∵,
∴ ,
∴ 即
连接ME ∵于F,F为AE的中点,
∴MN是AE的垂直平分线
∴,
由(2)知 ,,
∴,
又,
∴,
∴ ,
∴ ,
又,
∴
∴
∴
∵
∴四边形PDCQ为矩形
∴
设
∵E是BC中点
∴
∴
∴ 即
∴
∴
设
∴
中,由勾股定理得
∴ 解得
∴
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、平行四边形的判定与性质、直角三角形斜边上的中线性质、勾股定理等知识;本题综合性强,有一定难度.
26、(1)①当x≤8000时,y=0;②当8000<x≤30000时,y=0.5x﹣4000;③当30000<x≤50000时,y=0.6x﹣7000;(2)1元.
【解析】
(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;
(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.
【详解】
解:(1)由题意得:
①当x≤8000时,y=0;
②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;
③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;
(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,
∵20000>11000,
∴他的住院医疗费用超过30000元,
当花费是50000元时,报销钱数为:y=11000+20000×60%=23000(元),
故花费小于5万元,
故把y=20000代入y=0.6x﹣7000中得:
20000=0.6x﹣7000,
解得:x=1.
答:他住院医疗费用是1元.
本题考查一次函数的应用;分段函数.
题号
一
二
三
四
五
总分
得分
批阅人
医疗费用范围
报销比例标准
不超过8000元
不予报销
超过8000元且不超过30000元的部分
50%
超过30000元且不超过50000元的部分
60%
超过50000元的部分
70%
2025届河北省保定市满城区实验中学数学九上开学调研模拟试题【含答案】: 这是一份2025届河北省保定市满城区实验中学数学九上开学调研模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年浙江省绍兴市越城区袍江中学数学九上开学经典试题【含答案】: 这是一份2024年浙江省绍兴市越城区袍江中学数学九上开学经典试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安徽省桐城实验中学数学九上开学调研试题【含答案】: 这是一份2024年安徽省桐城实验中学数学九上开学调研试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

