终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】

    立即下载
    加入资料篮
    2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】第1页
    2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】第2页
    2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】

    展开

    这是一份2025届广西柳州市城中学区文华中学数学九年级第一学期开学质量跟踪监视试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)根据图1所示的程序,得到了如图y与x的函数图像,若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图像于点P、Q,连接OP、OQ.则以下结论:①x0时,y随x的增大而增大;④MQ=2PM⑤∠POQ可以等于90°.其中正确结论序号是( )
    A.①②③B.②③④C.③④⑤D.②④⑤
    2、(4分)用反证法证明“三角形中至少有一个内角大于或等于”时,应假设( )
    A.三角形的二个内角小于B.三角形的三个内角都小于
    C.三角形的二个内角大于D.三角形的三个内角都大于
    3、(4分)甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是( )
    A.甲的速度是70米/分B.乙的速度是60米/分
    C.甲距离景点2100米D.乙距离景点420米
    4、(4分)关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为( )
    A.﹣5B.﹣2C.0D.﹣8
    5、(4分)下列分解因式正确的是( )
    A.B.
    C.D.
    6、(4分)为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为( )
    A.20,16B.l6,20C.20,l2D.16,l2
    7、(4分)已知直角三角形两边的长为3和4,则此三角形的周长为( )
    A.12B.7+C.12或7+D.以上都不对
    8、(4分)在平面直角坐标系中,将点先向左平移个单位长度,再向下平移个单位长度,则平移后得到的点是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝1.
    10、(4分)在一个内角为60°的菱形中,一条对角线长为16,则另一条对角线长等于_____.
    11、(4分)已知一次函数y=x+b的图象经过第一、二、三象限,写出一个符合条件的b的值为_____.
    12、(4分)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C/处,BC/交AD于E,AD=8,AB=4,DE的长=________________.
    13、(4分)将直线向上平移2个单位得到直线_____________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BAC的平分线AE交C于F,EG⊥AB于G,请判断四边形GECF的形状,并证明你的结论.
    15、(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:
    (1)根据上图填写下表:
    (2)根据上表数据,分别从平均数、中位数、众数、方差的角度分析哪个班的成绩较好.
    16、(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:
    请根据表格提供的信息,解答以下问题:
    (1)本次决赛共有__________名学生参加;
    (2)直接写出表中:_______________________
    (3)请补全右面相应的频数分布直方图;
    (4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.
    17、(10分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.
    (1)在图1中,“7分”所在扇形的圆心角等于 .
    (2)请你将图2的条形统计图补充完整;
    (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.
    18、(10分)为了对某市区全民阅读状况进行调查和评估,有关部门随机抽取了部分市民进行每天阅读时间情况的调查,并根据调查结果制做了如下尚不完整的频数分布表(被调查者每天的阅读时间均在0﹣120分钟之内)
    (1)被调查的市民人数为多少,表格中,m,n为多少;
    (2)补全频数分布直方图;
    (3)某市区目前的常住人口约有118万人,请估计该市区每天阅读时间在60~120分钟的市民大约有多少万人?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)下列函数的图象(1),(2),(3),(4)不经过第一象限,且随的增大而减小的是__________.(填序号)
    20、(4分)如图,直角边分别为3,4的两个直角三角形如图摆放,M,N为斜边的中点,则线段MN的长为_____.
    21、(4分)已知,,则的值为__________.
    22、(4分)当x=__________时,分式无意义.
    23、(4分) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)阅读理解:我们知道因式分解与整式乘法是互逆关系,那么逆用乘法公式,即,是否可以因式分解呢?当然可以,而且也很简单。如;.请你仿照上述方法分解因式:
    (1) (2)
    25、(10分)某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.
    (1)今年5月份A款汽车每辆售价多少万元?
    (2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?
    (3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
    26、(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).
    根据以上信息,解答下列问题:
    (1)该班共有 名学生?其中穿175型校服的学生有 人.
    (2)在条形统计图中,请把空缺的部分补充完整;
    (3)在扇形统计图中,请计算185型校服所对应扇形圆心角度数为 ;
    (4)该班学生所穿校服型号的众数是 ,中位数是 .
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据题意得到当x<0时,y=- ,当x>0时,y=,设P(a,b),Q(c,d),求出ab=-2,cd=4,求出△OPQ的面积是3;x>0时,y随x的增大而减小;由ab=-2,cd=4得到MQ=2PM;因为∠POQ=90°也行,根据结论即可判断答案.
    【详解】
    解:①x<0,y=-,∴①错误;
    ②当x<0时,y=-,当x>0时,y=,
    设P(a,b),Q(c,d),
    则ab=-2,cd=4,
    ∴△OPQ的面积是(-a)b+cd=3,∴②正确;
    ③x>0时,y随x的增大而减小,∴③错误;
    ④∵ab=-2,cd=4,即MQ=2PM,∴④正确;
    ⑤设PM=a,则OM=-.则PO2=PM2+OM2=a2+(-)2=a2+,
    QO2=MQ2+OM2=(2a)2+(-)2=4a2+,
    PQ2=PO2+QO2=a2++4a2+=(3a)2=9a2,
    整理得a4=2,
    ∵a有解,∴∠POQ=90°可能存在,故⑤正确;
    正确的有②④⑤,
    故选D.
    本题主要考查对反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能根据这些性质进行说理是解此题的关键.
    2、B
    【解析】
    反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.
    【详解】
    反证法证明命题“三角形中至少有一个角大于或等于60°”时,
    首先应假设这个三角形中每一个内角都小于60°,
    故选:B.
    本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.
    3、D
    【解析】
    根据图中信息以及路程、速度、时间之间的关系一一判断即可.
    【详解】
    甲的速度==70米/分,故A正确,不符合题意;
    设乙的速度为x米/分.则有,660+24x-70×24=420,
    解得x=60,故B正确,本选项不符合题意,
    70×30=2100,故选项C正确,不符合题意,
    24×60=1440米,乙距离景点1440米,故D错误,
    故选D.
    本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
    4、C
    【解析】
    利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.
    【详解】
    解:依题意,关于x的一元二次方程,有两个不相等的实数根,即
    △=b2﹣4ac=42+8c>1,得c>﹣2
    根据选项,只有C选项符合,
    故选:C.
    本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式 有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1 时,方程有两个相等的实数根;③当△<1 时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.
    5、C
    【解析】
    【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.
    【详解】A. ,故A选项错误;
    B. ,故B选项错误;
    C. ,故C选项正确;
    D. =(x-2)2,故D选项错误,
    故选C.
    【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.
    6、A
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
    【详解】
    解:在这一组数据中20是出现次数最多的,故众数是20;
    将这组数据从大到小的顺序排列后,处于中间位置的数是1,1,那么这组数据的中位数1.
    故选:A.
    本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.
    7、C
    【解析】
    设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x==5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+=7+.故选C
    8、A
    【解析】
    根据向左平移横坐标减,向下平移纵坐标减进行解答即可.
    【详解】
    解:将点先向左平移个单位长度得,再向下平移个单位长度得.
    故选A.
    本题主要考查点坐标的平移规律:左减右加纵不变,上加下减横不变.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、14
    【解析】
    已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
    解:根据对角线的长可以求得菱形的面积,
    根据S=ab=×6×8=14cm1,
    故答案为14.
    10、16或
    【解析】
    画出图形,根据菱形的性质,可得△ABC为等边三角形,分两种情况讨论,由直角三角形的性质可求解.
    【详解】
    由题意得,∠ABC=60°,AC=16,或BD=16
    ∵四边形ABCD是菱形,
    ∴BA=BC,AC⊥BD,AO=OC,BO=OD,∠ABD=30°
    ∴△ABC是等边三角形,
    ∴AC=AB=BC
    当AC=16时,
    ∴AO=8,AB=16
    ∴BO=8
    ∴BD=16
    当BD=16时,
    ∴BO=8,且∠ABO=30°
    ∴AO=
    ∴AC=
    故答案为:16或
    本题考查了菱形的性质,解答本题的关键是熟练掌握菱形的四边相等、对角线互相垂直且平分的性质.
    11、2
    【解析】
    图象经过一、三象限,还过第二象限,所以直线与y轴的交点在正半轴上,则b>2.
    【详解】
    解:∵图象经过第一、二、三象限,
    ∴直线与y轴的交点在正半轴上,则b>2.
    ∴符合条件的b的值大于2即可.
    ∴b=2,
    故答案为2.
    考查了一次函数图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数及常数是大于2或是小于2.
    12、5
    【解析】
    首先根据矩形的性质可得出AD∥BC,即∠1=∠3,然后根据折叠知∠1=∠2,C′D=CD、BC′=BC,可得到∠2=∠3,进而得出BE=DE,设DE=x,则EC′=8-x,利用勾股定理求出x的值,即可求出DE的长.
    【详解】
    ∵四边形ABCD是矩形,
    ∴AD∥BC,即∠1=∠3,
    由折叠知,∠1=∠2,C′D=CD=4、BC′=BC=8,
    ∴∠2=∠3,即DE=BE,
    设DE=x,则EC′=8−x,
    在Rt△DEC′中,DC′2+EC′2=DE2
    ∴42+(8−x)2=x2解得:x=5,
    ∴DE的长为5.
    本题考查折叠问题,解题的关键是掌握折叠的性质和矩形的性质.
    13、
    【解析】
    利用平移时k的值不变,只有b值发生变化,由上加下减得出即可.
    【详解】
    解:直线y=x-1向上平移2个单位,
    得到直线的解析式为y=x-1+2=x+1.
    故答案为:
    本题考查了一次函数图象与几何变换,熟记直线解析式平移的规律:“上加下减,左加右减”是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、四边形GECF是菱形,理由详见解析.
    【解析】
    试题分析:根据全等三角形的判定定理HL进行证明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根据平行线EG∥CD的性质、∠BAC平分线的性质以及等量代换推知∠FEC=∠CFE,易证CF=CE;从而根据邻边相等的平行四边形是菱形进行判断.
    试题解析:四边形GECF是菱形,理由如下:
    ∵∠ACB=90°,
    ∴AC⊥EC.
    又∵EG⊥AB,AE是∠BAC的平分线,
    ∴GE=CE.
    在Rt△AEG与Rt△AEC中,

    ∴Rt△AEG≌Rt△AEC(HL),
    ∴GE=EC,
    ∵CD是AB边上的高,
    ∴CD⊥AB,
    又∵EG⊥AB,
    ∴EG∥CD,
    ∴∠CFE=∠GEA,
    ∵Rt△AEG≌Rt△AEC,
    ∴∠GEA=∠CEA,
    ∴∠CEA=∠CFE,即∠CEF=∠CFE,
    ∴CE=CF,
    ∴GE=EC=FC,
    又∵EG∥CD,即GE∥FC,
    ∴四边形GECF是菱形.
    考点:菱形的判定.
    15、
    【解析】
    分析:
    (1)根据“中位数”、“众数”的定义及“方差”的计算公式结合统计图中的数据进行分析计算即可;
    (2)按照题中要求,分别根据平均数、中位数、众数、方差的意义进行说明即可.
    详解:
    甲的众数为:,
    方差为:

    乙的中位数是:8;
    故答案为;
    从平均数看,两班平均数相同,则甲、乙两班的成绩一样好;
    从中位数看,甲班的中位数大,所以甲班的成绩较好;
    从众数看,乙班的众数大,所以乙班的成绩较好;
    从方差看,甲班的方差小,所以甲班的成绩更稳定.
    点睛:理解“平均数、中位数、众数、方差的意义和计算方法”是正确解答本题的关键.
    16、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.
    【解析】
    (1)用第二组的频数除以它所占的频率得到调查的总人数;
    (2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;
    (3)利用a的值补全频数分布直方图;
    (4)用第四组和第五组的频数和除以样本容量即可.
    【详解】
    解:解:(1)10÷0.2=50,
    所以本次决赛共有50名学生参加;
    (2)a=50×0.4=20,b==0.24;
    故答案为50;20;0.24;
    (3)补全频数分布直方图为:
    (4)本次大赛的优秀率=×100%=52%.
    故答案为50;20;0.24;52%.
    本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    17、(1)144;(2)条形统计图补充见解析;(3)平均分为8.3,中位数为7,从平均数看,两队成绩一样,从中位数看,乙队成绩好.
    【解析】
    (1)认真分析题意,观察扇形统计图,根据扇形统计图的圆心角之和为360°和所给的角度即可得到答案;
    (2)结合扇形统计图和条形统计图,得出乙校参加的人数,即可得8分的人数,完成条形统计图即可.
    (3)结合第(2)问的答案,可以补充统计表,接下来结合平均数、中位数的概念,即可求出甲校的平均分以及中位数,通过与乙校进行比较,即可得到答案.
    【详解】
    (1)观察扇形统计图,可得
    “7分”所在扇形图的圆心角等于360°-(90°+54°+72°)=144°
    (2)(人)
    20-8-4-5=3(人)
    乙校得8分的人数为3,补充统计图如图所示
    (3)由甲乙两校参加的人数相等,可得
    甲校得9分的人数为20-(11+8)=1
    故甲校成绩统计表中,得9分的对应人数为1.
    结合平均数的概念,可得
    甲校的平均分为 =8.3(分)
    结合中位数的概念,可得
    甲校的中位数为7
    从平均分、中位数的角度分析,甲乙两校的平均分相同,乙校的中位数>甲校的中位数,
    可知乙校的成绩好.
    此题考查加权平均数,中位数,条形统计图,解题关键在于看懂图中数据
    18、(1)1000,100,0.05;(2)根据(1)补图见解析;(3)估计该市区每天阅读时间在 60~120分钟的市民大约有17.7万人.
    【解析】
    (1)根据0≤x<30的频数和频率先求出总人数,用总人数乘以60≤x<90的频率求出m,用90≤x≤120的频数除以总人数求出n;
    (2)根据(1)求出的总人数,补全统计图即可;
    (3)用常住人口数乘以阅读时间在60~120 分钟的人数的频率即可得出答案.
    【详解】
    (1)根据题意得:被调查的市民人数为=1000(人),
    m=1000×0.1=100,
    n==0.05;
    (2)根据(1)补图如下:
    (3)根据题意得:118×(0.1+0.05)=17.7(万人)
    估计该市区每天阅读时间在 60~120分钟的市民大约有17.7万人.
    故答案为(1)1000,100,0.05;(2)根据(1)补图见解析;(3)估计该市区每天阅读时间在 60~120分钟的市民大约有17.7万人.
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(1)
    【解析】
    根据一次函数的增减性与各项系数的关系逐一判断即可.
    【详解】
    解:(1)中,因为-1<0,所以随的增大而减小,且经过二、四象限,故符合题意;
    (2)中,因为1>0,所以随的增大而增大,故不符合题意;
    (3),因为-2<0,所以随的增大而减小,但经过一、二、四象限,故不符合题意;
    (4)中,因为1>0,所以随的增大而增大,故不符合题意.
    故答案为:(1).
    此题考查的是一次函数的图象及性质,掌握一次函数的图象及性质与各项系数的关系是解决此题的关键.
    20、
    【解析】
    根据勾股定理求出斜边长,根据直角三角形的性质得到CM=,CN=,∠MCB=∠ECN,∠MCE=∠NCD,根据勾股定理计算即可.
    【详解】
    解:如图
    连接CM、CN,由勾股定理得,
    AB=DE=,
    △ABC、△CDE是直角,三角形,M,N为斜边的中点,
    CM=CN=,∠MCB=∠ECN,∠MCE=∠NCD,
    ∠MCN=,
    MN=.
    因此, 本题正确答案是:.
    本题主要考查三角形的性质及计算,灵活做辅助线是解题的关键.
    21、
    【解析】
    由,,计算可得a+b=4,ab=1,再把因式分解可得ab(a+b),整体代入求值即可.
    【详解】
    ∵,,
    ∴a+b=4,ab=1
    ∴=ab(a+b)=4.
    故答案为:4.
    本题考查了因式分解的应用,正确把进行因式分解是解决问题的关键.
    22、1
    【解析】
    根据分式无意义的条件:分母等于0,进行计算即可.
    【详解】
    ∵分式无意义,
    ∴,
    ∴.
    故答案为:1.
    本题考查分式有无意义的条件,明确“分母等于0时,分式无意义;分母不等于0时,分式有意义”是解题的关键.
    23、57.5
    【解析】
    根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
    【详解】
    如图,AE与BC交于点F,
    由BC //ED 得△ABF∽△ADE,
    ∴AB:AD=BF:DE,即5:AD=0.4:5,
    解得:AD=62.5(尺),
    则BD=AD-AB=62.5-5=57.5(尺)
    故答案为57.5.
    本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
    二、解答题(本大题共3个小题,共30分)
    24、①;②
    【解析】
    (1)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    (2)逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab即可.
    【详解】
    (1)x2-7x-18=(x+2)(x-9);
    (2)x2+12xy-13y2=(x+13y)(x-y).
    本题考查因式分解的应用,解题的关键是学会逆用乘法公式(x+a) (x+b)=x2+(a+b)x+ab,进行因式分解,属于中考常考题型.
    25、(1)1万元 (2)共有5种进货方案 (3)购买A款汽车6辆,B款汽车1辆时对公司更有利
    【解析】
    分析:(1)求单价,总价明显,应根据数量来列等量关系.等量关系为:今年的销售数量=去年的销售数量.
    (2)关系式为:公司预计用不多于2万元且不少于11万元的资金购进这两款汽车共15辆.
    (3)方案获利相同,说明与所设的未知数无关,让未知数x的系数为0即可;多进B款汽车对公司更有利,因为A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,所以要多进B款.
    详解:(1)设今年5月份A款汽车每辆售价m万元.则:

    解得:m=1.
    经检验,m=1是原方程的根且符合题意.
    答:今年5月份A款汽车每辆售价1万元;
    (2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,根据题意得:
    11≤7.5x+6(15﹣x)≤2.
    解得:6≤x≤3.
    ∵x的正整数解为6,7,8,1,3,∴共有5种进货方案;
    (3)设总获利为W万元,购进A款汽车x辆,则:
    W=(1﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.
    当a=0.5时,(2)中所有方案获利相同.
    此时,购买A款汽车6辆,B款汽车1辆时对公司更有利.
    点睛:本题考查了分式方程和一元一次不等式组的综合应用,找到合适的等量关系及不等关系是解决问题的关键.
    26、 (1)50;10;(2)补图见解析;(3)14.4°;(4)众数是165和1;中位数是1.
    【解析】
    (1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;
    (2)求出185型的人数,然后补全统计图即可;
    (3)用185型所占的百分比乘以360°计算即可得解;
    (4)根据众数的定义以及中位数的定义解答.
    【详解】
    (1)15÷30%=50(名),50×20%=10(名),
    即该班共有50名学生,其中穿175型校服的学生有10名;
    (2)185型的学生人数为:50-3-15-15-10-5=50-48=2(名),
    补全统计图如图所示;
    (3)185型校服所对应的扇形圆心角为:×360°=14.4°;
    (4)165型和1型出现的次数最多,都是15次,
    故众数是165和1;
    共有50个数据,第25、26个数据都是1,
    故中位数是1.
    本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了平均数、中位数、众数的认识.
    题号





    总分
    得分
    批阅人
    考试分数(分)
    20
    16
    12
    8
    人数
    24
    18
    5
    3
    平均数
    中位数
    众数
    方差
    甲班
    8.5
    8.5


    乙班
    8.5

    10
    1.6
    组别
    成绩(分)
    频数(人数)
    频率

    2

    10
    0.2

    12

    0.4

    6
    阅读时间x(分钟)
    0≤x<30
    30≤x<60
    60≤x<90
    90≤x≤120
    频数
    450
    400
    m
    50
    频率
    0.45
    0.4
    0.1
    n

    相关试卷

    2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】:

    这是一份2024年广西柳州市城中区龙城中学数学九年级第一学期开学考试试题【含答案】,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023-2024学年广西柳州市城中区文华中学数学九上期末调研模拟试题含答案:

    这是一份2023-2024学年广西柳州市城中区文华中学数学九上期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,方程2x等内容,欢迎下载使用。

    广西柳州市城中学区文华中学2023-2024学年数学九上期末综合测试试题含答案:

    这是一份广西柳州市城中学区文华中学2023-2024学年数学九上期末综合测试试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是必然事件的是,函数y=kx﹣k,抛物线的对称轴为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map