2025届保山市重点中学数学九年级第一学期开学学业水平测试试题【含答案】
展开这是一份2025届保山市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE+DC=DE
其中正确的个数是( )
A.1B.2C.0D.3
2、(4分)如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m 远,该同学的身高为1.7m ,则树高为( ).
A.3.4mB.4.7 mC.5.1mD.6.8m
3、(4分)周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )
A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米
C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米
4、(4分)在中招体育考试中,某校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为:=8.2,=21.7,=15,=17.2,则四个班体育考试成绩最不稳定的是( )
A.甲班B.乙班C.丙班D.丁班
5、(4分)如图,点是线段的中点,分别以为边作等腰和等腰,,连接,且相交于点,交于点,则下列说法中,不正确的是( )
A.是的中线B.四边形是平行四边形
C.D.平分
6、(4分)以下列各组数为边长,能组成直角三角形的是( )
A.1,2,3B.2,3,4C.3,4,6D.1,,2
7、(4分)若分式有意义,则x的取值范围是( )
A.x≠5B.x≠﹣5C.x>5D.x>﹣5
8、(4分)下列四组线段中,不能组成直角三角形的是( )
A.,,B.,,
C.,,D.,,
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)利用因式分解计算:2012-1992=_________;
10、(4分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为__________.
11、(4分)在射击比赛中,某运动员的1次射击成绩(单位:环)为:7,8,10,8,9,1.计算这组数据的方差为_________.
12、(4分)如图,在□ABCD中,对角线AC、BD相交于O,AC+BD=10,BC=3,则△AOD的周长为 .
13、(4分)如图,小明作出了边长为2的第1个正△A1B1C1 , 算出了正△A1B1C1的面积. 然后分别取△A1B1C1的三边中点A2、B2、C2 , 作出了第2个正△A2B2C2 , 算出了正△A2B2C2的面积. 用同样的方法,作出了第3个正△A3B3C3 , 算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______
三、解答题(本大题共5个小题,共48分)
14、(12分)(1)如图①,点 M 是正方形 ABCD 的边 BC 上一点,点 N 是 CD 延长线上一点, 且BM=DN,则线段 AM 与 AN 的关系.
(2)如图②,在正方形 ABCD 中,点 E、F分别在边 BC、CD上,且∠EAF=45°,判断 BE,DF,EF 三条线段的数量关系,并说明理由.
(3)如图③,在四边形 ABCD中,AB=AD,∠BAD=90°,∠ABC+∠ADC=180°,点E、F分别在边 BC、CD 上,且∠EAF=45°,若 BD=5,EF=3,求四边形 BEFD 的周长.
15、(8分)为了从甲、乙两名学生中选拨一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶6次,命中的环数如下:
甲:7,8,6,10,10,7
乙:7, 7,8,8,10,8,
如果你是教练你会选拨谁参加比赛?为什么?
16、(8分)如图,矩形放置在平面直角坐标系上,点分别在轴,轴的正半轴上,点的坐标是,其中,反比例函数y= 的图象交交于点.
(1)_____(用的代数式表示)
(2)设点为该反比例函数图象上的动点,且它的横坐标恰好等于,连结.
①若的面积比矩形面积多8,求的值。
②现将点绕点逆时针旋转得到点,若点恰好落在轴上,直接写出的值.
17、(10分)在的方格纸中,四边形的顶点都在格点上.
(1)计算图中四边形的面积;
(2)利用格点画线段,使点在格点上,且交于点,计算的长度.
18、(10分) “书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线恰好将矩形OABC分成面积相等的两部分,那么b=_____________.
20、(4分)分解因式:________.
21、(4分)将正比例函数y= -x的图象向上平移,则平移后所得图象对应的函数解析式可能是______________(答案不唯一,任意写出一个即可).
22、(4分)如图,函数与函数的图象相交于A、B两点,轴于点C,轴于点D,则四边形ADBC的面积为___________.
23、(4分)已知正方形的边长为1,如果将向量的运算结果记为向量,那么向量的长度为______
二、解答题(本大题共3个小题,共30分)
24、(8分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:
请你根据以上提供的信息解答下列问题:
(1)求一班参赛选手的平均成绩;
(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?
(3)求二班参赛选手成绩的中位数.
25、(10分)先化简再求值:(x+y)2﹣x(x+y),其中x=2,y=﹣1.
26、(12分)如图,正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,,H在BC延长线上,且CH=AF,连接DF,DE,DH。
(1)求证DF=DH;
(2)求的度数并写出计算过程.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
①根据旋转的性质得BF=DC、∠FBA=∠C、∠BAF=∠CAD,由∠ABC+∠C=90°知∠ABC+∠FBA=90°,即可判断①;
②由∠BAC=90°、∠DAE=45°知∠BAE+∠CAD=∠DAE=45°,继而可得∠EAF=∠EAD,可判断②;
③由BF=DC、EF=DE,根据BE+BF>EF可判断③;
④根据BE+BF=EF可判断④.
【详解】
∵△ADC绕点A顺时针旋转90°后,得到△AFB,
∴△ADC≌△AFB,
∴BF=DC,∠FBA=∠C,∠BAF=∠CAD,
又∵∠ABC+∠C=90°,
∴∠ABC+∠FBA=90°,即∠FBC=90°,
∴BF⊥BC,故①正确;
∵∠BAC=90°,∠DAE=45°,
∴∠BAE+∠CAD=∠DAE=45°,
∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,
在△AED和△AEF中,
∵ ,
∴△AED≌△AEF,故②正确;
∵BF=DC,
∴BE+DC=BE+BF,
∵△AED≌△AEF,
∴EF=DE,
在△BEF中,∵BE+BF>EF,
∴BE+DC>DE,故③错误,
∵∠FBC=90°,
∴BE+BF=EF,
∵BF=DC、EF=DE,
∴BE+DC=DE,④正确;
故选:D.
此题考查勾股定理,旋转的性质,全等三角形的判定,解题关键在于掌握各性质定义.
2、C
【解析】
由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.
【详解】
解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,
故△ABC∽△AED,
由相似三角形的性质,设树高x米,
则,
∴x=5.1m.
故选:C.
本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.
3、C
【解析】
解:A.小丽从家到达公园共用时间20分钟,正确;
B.公园离小丽家的距离为2000米,正确;
C.小丽在便利店时间为15﹣10=5分钟,错误;
D.便利店离小丽家的距离为1000米,正确.
故选C.
4、B
【解析】
方差越小数据越稳定,根据方差的大小即可得到答案.
【详解】
∵8.2<15<17.2<21.7,
∴乙班的体育考试成绩最不稳定,
故选:B.
此题考查方差的运用,方差考查数据稳定性,方差越小数据越稳定,方差越大数据越不稳定.
5、D
【解析】
根据平行四边形、全等三角形的判定与性质以及等腰三角形三线合一的性质,逐一判定即可.
【详解】
∵点是线段的中点,
∴BC=EC
∵等腰和等腰,,
∴AB=AC=CD=DE,∠ABC=∠ACB=∠DCE=∠DEC=45°
∴∠ACD=90°,AD=BC=EC
∴∠CAD=∠CDA=45°
∴AD∥BE
∴四边形是平行四边形,故B选项正确;
在△ABE和△DEB中,
∴△ABE≌△DEB(SAS)
∴,故C选项正确;
∴∠DBE=∠AEB
∴FC⊥BE
∵AD∥BE
∴FC⊥AD
∴是的中线,故A选项正确;
∵AC≠CE
∴不可能平分,故D选项错误;
故选:D.
此题主要考查平行四边形、全等三角形的判定与性质以及等腰三角形的性质,熟练掌握,即可解题.
6、D
【解析】
根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.
【详解】
解:A、12+22=5≠32,故不符合题意;
B、22+32=13≠42,故不符合题意;
C、32+42=25≠62,故不符合题意;
D、12+=4=22,符合题意.
故选D.
本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,简便的方法是:判断两个较小的数的平方和是否等于最大数的平方即可.
7、A
【解析】
解:∵若分式有意义,
∴x﹣5≠0,∴x≠5;
故选A.
8、A
【解析】
由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.
【详解】
解:A、22+32≠42,故不能组成直角三角形,符合题意;
B、12+2=22,故能组成直角三角形,不符合题意;
C、12+22=()2,故能组成直角三角形,不符合题意;
D、52+122=132,故能组成直角三角形,不符合题意.
故选:A.
本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要验证两小边的平方和是否等于最长边的平方即可判断.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、800
【解析】
分析:先利用平方差公式分解因式,然后计算即可求解.
详解:2012-1992=(201+199)(201-199)=800.
故答案为800.
点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.
10、
【解析】
设BE=x,则CE=BC﹣BE=16﹣x,
∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,
在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,
由翻折的性质得,∠AEF=∠CEF,
∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,
过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF= = =.
故答案为 .
点睛:本题考查矩形的翻折,解题时要注意函数知识在生产生活中的实际应用,注意用数学知识解决实际问题能力的培养.
11、
【解析】
试题分析:先计算平均数所以方差为
考点:方差;平均数
12、8
【解析】试题分析:根据平行四边形的性质可得:OA+OD=(AC+BD)=5,AD=BC=3,则△AOD的周长为5+3=8.
考点:平行四边形的性质.
13、
【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.
【详解】
正△A1B1C1的面积是×22==,
∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,
∴面积的比是1:4,
则正△A2B2C2的面积是× ==;
∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,
∴面积是×==;
依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,
第n个三角形的面积是.
故答案是: , .
考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1)结论:AM=AN,AM⊥AN.理由见解析;(2)BE+DF=EF;(3)四边形BEFD的周长为1.
【解析】
(1)利用正方形条件证明△ABM≌△ADN,即可推出结论,
(2)过点 A 作 AG⊥AE 交 CD 延长线于点 G,证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题,
(3)过点 A 作 AG⊥AE 交 CD 延长线于点 G.证明△ABE≌△ADG得AE=AG,∠EAF=∠GAF进而证明△AEF≌△AGF,得EF=FG即可解题.
【详解】
(1)结论:AM=AN,AM⊥AN.
理由:∵四边形 ABCD 是正方形,
∴AB=AD,∠B=∠ADN=∠BAD=90°,
∵BM=DN,
∴△ABM≌△ADN,
∴AM=AN,∠BAM=∠DAN,
∴∠AMN=∠BAD=90°,
∴AM⊥AN,
(2)如图②中,过点 A 作 AG⊥AE 交 CD 延长线于点 G.
∵四边形 ABCD 为正方形,
∴AB=AD,∠B=∠BAD=∠ADC=90°.
∴∠B=∠ADG=90°,∠BAE+∠EAD=90°.
∵AG⊥AE,∴∠DAG+∠EAD=90°.
∴∠BAE=∠DAG.
在△ABE 和△ADG 中,
,
∴△ABE≌△ADG.
∴AE=AG,BE=DG.
∵∠EAF=45°,AG⊥AE,
∴∠EAF=∠GAF=45°.
在△FAE 和△FAG 中,
,
∴△AEF≌△AGF.
∴EF=FG.
∵FG=DF+DG=DF+BE,
∴BE+DF=EF.
(3)如图③中,过点 A 作 AG⊥AE 交 CD 延长线于点 G.
∵AB=AD,∠ABC+∠ADC=180°,∠ADG+∠ADC=180°
∴∠ABE=∠ADG,
∵AG⊥AE,∴∠DAG+∠EAD=90°.
∵∠BAE+∠EAD=90°
∴∠BAE=∠DAG.
在△ABE 和△ADG 中,
,
∴△ABE≌△ADG.
∴AE=AG,BE=DG.
∵∠EAF=45°,AG⊥AE,
∴∠EAF=∠GAF=45°.
在△FAE 和△FAG 中,
,
∴△AEF≌△AGF.
∴EF=FG.
∵FG=DF+DG=DF+BE,
∴BE+DF=EF.
∴四边形BEFD的周长为EF+(BE+DF)+DB=3+3+5=1.
本题考查了三角形全等的判定,正方形的性质,中等难度,作辅助线是解题关键.
15、应选乙参加比赛.
【解析】
分析:分别求出甲、乙两名学生6次射靶环数的平均数和方差,然后进行比较即可求得结果.
详解:(1)甲=(7+8+6+10+10+7)=8;
S甲2= [(7-8)2+(8-8)2+(6-8)2+(10-8)2+(10-8)2+(7-8)2]=;
乙=(7+7+8+8+10+8)=8;
S乙2=[(7-8)2+(7-8)2+(8-8)2+(8-8)2+(10-8)2+(8-8)2]=1;
∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,
∴乙同学的成绩较稳定,应选乙参加比赛.
点睛:本题考查一组数据的方差的意义,是一个基础题,解题时注意平均数是反映数据的平均水平,而方差反映波动的大小,波动越小数据越稳定.
16、(1)m﹣1;(2)①m2=2;②m=2+2.
【解析】
(1)利用反比例函数图象上点的坐标特征可求出点D的坐标,结合点B的坐标可得出BD的长;
(2)①过点P作PF⊥AB于点E,则PF=m﹣1,由△PBD的面积比矩形OABC面积多8,可得出关于m的一元二次方程,解之取其正值即可得出结论;
②过点P作PM⊥AB于点M,作PN⊥x轴于点N,易证△DPM≌△EPN,利用全等三角形的性质及反比例函数图象上点的坐标特征,可得出关于m的方程,解之取其正值即可得出结论.
【详解】
解:(1)当x=1时,y==1,
∴点D的坐标为(1,1),
∴BD=AB﹣AD=m﹣1.
故答案为:m﹣1.
(2)①过点P作PF⊥AB于点E,则PF=m﹣1,如图1所示.
∵△PBD的面积比矩形OABC面积多8,
∴BD•PF﹣OA•OC=8,即(m﹣1)2﹣1m=8,
整理,得:m2﹣2m=0,
解得:m1=0(舍去),m2=2.
②过点P作PM⊥AB于点M,作PN⊥x轴于点N,如图2所示.
∵∠DOM+∠MPE=90°,∠MPE+∠EPN=90°,
∴∠DPM=∠EPN.
在△DPM和△EPN中,,
∴△DPM≌△EPN(AAS),
∴PM=PN.
∵点P在反比例函数y=(x>0)的图象上,
∴点P的坐标为(m,),
∴PM=m﹣1,PN=,
∴m﹣1=,
解得:m1=2+2,m2=2﹣2(舍去).
∴若点E恰好落在x轴上时,m的值为2+2.
本题考查反比例函数图象上点的坐标特征、三角形的面积、矩形的面积、全等三角形的判定与性质以及解一元二次方程,解题的关键是:(1)利用反比例函数图象上点的坐标特征,找出点D的坐标;(2)①由△PBD的面积比矩形OABC面积多8,找出关于m的一元二次方程;②利用全等三角形的性质及反比例函数图象上点的坐标特征,找出关于m的方程.
17、(1);(2)
【解析】
(1)先证明是直角三角形,然后将四边形分为可得出四边形的面积;
(2)根据格点和勾股定理先作出图形,然后由面积法可求出DF的值。
【详解】
解:(1)由图可得
是直角三角形
(2)如图,即为所求作的线段
又,且,
本题考查了勾股定理及其逆定理的应用,考查了复杂作图-作垂线,要求能灵活运用公式求面积和已经面积求高。
18、甲种图书的单价为每本45元,乙种图书的单价为每本90元
【解析】
设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元,根据题意列出分式方程,解之经检验后即可得出结论.
【详解】
设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元
根据题意得:
解得:x=90
经检验:x=90是分式方程的解
答:甲种图书的单价为每本45元,乙种图书的单价为每本90元.
本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、0.5
【解析】
经过矩形对角线的交点的直线平分矩形的面积.故先求出对角线的交点坐标,再代入直线解析式求解.
【详解】
连接AC、OB,交于D点,作DE⊥OA于E点,
∵四边形OABC为矩形,
∴DE=AB=3,OE=OA=7.5,
∴D(7.5,3),
∵直线恰好将矩形OABC分成面积相等的两部分,
∴直线经过点D,
∴将(7.5,3)代入直线得:
3=×7.5+b,
解得:b=0.5,
故答案为:0.5.
本题考查了一次函数的综合应用及矩形的性质;找着思考问题的突破口,理解过矩形对角线交点的直线将矩形面积分为相等的两部分是正确解答本题的关键.
20、 (a+1)(a-1)
【解析】
根据平方差公式分解即可.
【详解】
(a+1)(a-1).
故答案为:(a+1)(a-1).
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
21、y=-x+1
【解析】
根据平面坐标系中函数图像的平移规律“左加右减,上加下减”可知,当平移1个单位时,平移后的函数解析式为y=-x+1.
【详解】
由题意得:y = -x的图像向上平移,得到y=-x+1,故本题答案是y=-x+1.
本题主要考查图形的平移和一次函数的图像性质,学生掌握即可.
22、1
【解析】
解出AB两点的坐标,可判断出四边形ADBC是平行四边形,由平行四边形对角线平分平行四边形的面积,所以四边形ADBC的面积为.
【详解】
解:解二元一次方程方程组
解得 或
则A点坐标为(-2,2),B点坐标为(2,-2)
C点坐标为(0,2),D点坐标为(2,-2)
所以AC∥BD,AC=BD=2
所以四边形ADBC是平行四边形
则==2××2×4=1,
故答案为1.
本题考查了正比例函数与反比例函数交点组成四边形求面积的问题,掌握相关知识点是解决本题的关键.
23、1
【解析】
利用向量的三角形法则直接求得答案.
【详解】
如图:
∵-==且||=1,
∴||=1.
故答案为:1.
此题考查了平面向量,属于基础题,熟记三角形法则即可解答.
二、解答题(本大题共3个小题,共30分)
24、(1)分;(2)人;(3)80分
【解析】
(1)根据算术平均数的定义列式计算可得;
(2)总人数乘以A、B、C等级所占百分比即可;
(3)根据中位数的定义求解即可.
【详解】
解:(1)一班参赛选手的(分)
(2)二班成绩在级以上(含级)(人)
(3)二班、人数占,
参赛学生共有20人,因此中位数落在C级,
二班参赛选手成绩的中位数为80分.
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
25、2.
【解析】
根据整式乘法法则将式子化简,再代入求值,要注意二次根式的运算法则的应用.
【详解】
解:
原式
=2
本题考核知识点:二次根式化简求值. 解题关键点:掌握乘法公式.
26、(1)详见解析;(2),理由详见解析.
【解析】
(1)根据正方形的性质和全等三角形的判定和性质证明即可.
(2)利用勾股定理得出Rt△DFG和Rt△EFG中,有FG2=DF2-DG2=EF2-EG2,求得DG=DF,进而解答即可.
【详解】
(1)证明 ∵ 正方形ABCD的边长为6,
∴ AB=BC=CD=AD =6,.
∴ ,.
在△ADF和△CDH中,
∴ △ADF≌△CDH.(SAS)
∴ DF=DH ①
(2)连接EF
∵△ADF≌△CDH
∴.
∴ .
∵ 点E为BC的中点,
∴ BE=CE=1.
∵ 点F在AB边上,,
∴ CH= AF=2,BF=2.
∴ .
在Rt△BEF中,,
.
∴.②
又∵DE= DE,③
由①②③得△DEF≌△DEH.(SSS)
∴ .
此题考查全等三角形的判定与性质,正方形的性质,等腰直角三角形的性质,以及勾股定理,利用了转化的数学思想方法.
题号
一
二
三
四
五
总分
得分
相关试卷
这是一份2024年玉树市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年渭南市重点中学数学九年级第一学期开学学业水平测试试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年江苏省南通市紫石中学数学九年级第一学期开学学业水平测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

