终身会员
搜索
    上传资料 赚现金

    2024年四川省德阳中江县初中九年级数学第一学期开学达标检测模拟试题【含答案】

    立即下载
    加入资料篮
    2024年四川省德阳中江县初中九年级数学第一学期开学达标检测模拟试题【含答案】第1页
    2024年四川省德阳中江县初中九年级数学第一学期开学达标检测模拟试题【含答案】第2页
    2024年四川省德阳中江县初中九年级数学第一学期开学达标检测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年四川省德阳中江县初中九年级数学第一学期开学达标检测模拟试题【含答案】

    展开

    这是一份2024年四川省德阳中江县初中九年级数学第一学期开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一组数据,,,,的平均数为5,则另一组数据,,,,的平均数为( )
    A.4B.5C.6D.7
    2、(4分)下列分解因式,正确的是( )
    A.B.
    C.D.
    3、(4分)下列调查中,适合普查的事件是( )
    A.调查华为手机的使用寿命v
    B.调查市九年级学生的心理健康情况
    C.调查你班学生打网络游戏的情况
    D.调查中央电视台《中国舆论场》的节目收视率
    4、(4分)如图,四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,连接BE交AD、AC分别于F、 N,CM平分∠ACB交BN于M,下列结论:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正确的结论有( )
    A.1个B.2个
    C.3个D.4个
    5、(4分)下列命题中,正确的是( )
    A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点
    B.平行四边形是轴对称图形
    C.三角形的中位线将三角形分成面积相等的两个部分
    D.一组对边平行,一组对角相等的四边形是平行四边形
    6、(4分)如图,△ABC和△DCE都是等边三角形,点B、C、E在同一条直线上,BC=1,CE=2,连接BD,则BD的长为( )
    A.3B.2C.2D.
    7、(4分)如图,函数和的图像交于点,则根据图像可得不等式的解集是( )
    A.B.C.D.
    8、(4分)不等式组的解集是( )
    A.x>-2B.x<1
    C.-1<x<2D.-2<x<1
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______cm.
    10、(4分)已知直线y=2x﹣5经过点A(a,1﹣a),则A点落在第_____象限.
    11、(4分)若代数式有意义,则x的取值范围是______。
    12、(4分)下列命题:
    ①矩形的对角线互相平分且相等;
    ②对角线相等的四边形是矩形;
    ③菱形的每一条对角线平分一组对角;
    ④一条对角线平分一组对角的平行四边形是菱形.
    其中正确的命题为________(注:把你认为正确的命题序号都填上)
    13、(4分)函数的图像与如图所示,则k=__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)小聪和小明沿同一条路同时从学校出发到某超市购物,学校与超市的路程是4千米.小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达超市.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:
    (1)小聪在超市购物的时间为 分钟,小聪返回学校的速度为 千米/分钟;
    (2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;
    (3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?
    15、(8分)某乳品公司向某地运输一批牛奶,若由铁路运输,每千克牛奶只需运费0.60元;若由公路运输,不仅每千克牛奶需运费0.30元,而且还需其他费用600元.设该公司运输这批牛奶为x千克,选择铁路运输时所需费用为y1元;选择公路运输时所需费用为y2元.
    (1)请分别写出y1,y2与x之间的关系式;
    (2)公司在什么情况下选择铁路运输比较合算?什么情况下选择公路运输比较合算?
    16、(8分)(探究与证明)
    在正方形ABCD中,G是射线AC上一动点(不与点A、C重合),连BG,作BH⊥BG,且使BH=BG,连GH、CH.
    (1)若G在AC上(如图1),则:①图中与△ABG全等的三角形是 .
    ②线段AG、CG、GH之间的数量关系是 .
    (2)若G在AC的延长线上(如图2),那么线段AG、CG、BG之间有怎样的数量关系?写出结论并给出证明;
    (应用)(3)如图3,G在正方形ABCD的对角线CA的延长线上,以BG为边作正方形BGMN,若AG=2,AD=4,请直接写出正方形BGMN的面积.
    17、(10分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.
    18、(10分)如图所示,平行四边形中,和的平分线交于边上一点 ,
    (1)求的度数.
    (2)若,则平行四边形的周长是多少?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,已知函数和的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是_____________。
    20、(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8 cm,正方形A的面积是10cm1,B的面积是11 cm1,C的面积是13 cm1,则D的面积为____cm1.
    21、(4分)已知双曲线经过点(-1,2),那么k的值等于_______.
    22、(4分)若关于x的分式方程有增根,则a的值为_______
    23、(4分)如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,使点D恰好落在BC边上的F点处.已知折痕,且,那么该矩形的周长为______cm.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)(1)某学校“智慧方园”数学社团遇到这样一个题目:
    如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.
    经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).
    请回答:∠ADB= °,AB= .
    (2)请参考以上解决思路,解决问题:
    如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
    25、(10分)先化简再求值:,然后在 的范围内选取一个合适的整数作为x的值并代入求值.
    26、(12分)(1)把下面的证明补充完整
    已知:如图,直线AB、CD被直线EF所截,AB∥CD,EG平分∠BEF,FG平分∠DFE,EG、FG交于点G.求证:EG⊥FG.
    证明:∵AB∥CD(已知)
    ∴∠BEF+∠DFE=180°(______),
    ∵EG平分∠BEF,FG平分∠DFE(已知),
    ∴______,______(______),
    ∴∠GEF+∠GFE=(∠BEF+∠DFE)(______),
    ∴∠GEF+∠GFE=×180°=90°(______),
    在△EGF中,∠GEF+∠GFE+∠G=180°(______),
    ∴∠G=180°-90°=90°(等式性质),
    ∴EG⊥FG(______).
    (2)请用文字语言写出(1)所证命题:______.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    根据平均数的性质,所有数之和除以总个数即可得出平均数.
    【详解】
    依题意得:a1+4+a2-1+a3+1+a4-5+a5+5
    =a1+a2+a3+a4+a5+10
    =35,
    所以平均数为35÷5=1.
    故选D.
    本题考查的是平均数的定义,本题利用了整体代入的思想,解题的关键是了解算术平均数的定义,难度不大.
    2、B
    【解析】
    把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.
    【详解】
    A. 和因式分解正好相反,故不是分解因式;
    B. 是分解因式;
    C. 结果中含有和的形式,故不是分解因式;
    D. x2−4y2=(x+2y)(x−2y),解答错误.
    故选B.
    本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.
    3、C
    【解析】试题解析:A、调查华为手机的使用寿命适合抽样调查;
    B、调查市九年级学生的心理健康情况适合抽样调查;
    C、调查你班学生打网络游戏的情况适合普查;
    D、调查中央电视台《中国舆论场》的节目收视率适合抽样调查,
    故选C.
    4、B
    【解析】
    连接DE,由∠ABC=∠AEC=∠ADC=90°,根据圆周角定理的推论得到点A、B、C、D、E都在以AC为直径的圆上,再利用矩形的性质可得AE=ME,即①正确;再根据圆周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易证△AEF≌△CED,即可得到AB=AF,即②正确;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,
    而∠ECM=∠NCM+45°,即③正确;根据等腰三角形性质求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判断(4).
    【详解】
    连接DE.
    ∵四边形ABCD为矩形,△ACE为AC为底的等腰直角三角形,
    ∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,
    ∴点A. B. C. D. E都在以AC为直径的圆上,
    ∵AB=CD,
    ∴弧AB=弧CD,
    ∴∠AEB=∠CED,
    ∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,
    ∴BE⊥ED,故(1)正确;
    ∵点A. B. C. D. E都在以AC为直径的圆上,
    ∴∠AEF=∠CED,∠EAF=∠ECD,
    又∵△ACE为等腰直角三角形,
    ∴AE=CE,
    在△AEF和∉CED中,

    ∴△AEF≌△CED,
    ∴AF=CD,
    而CD=AB,
    ∴AB=AF,即(2)正确;
    ∴∠ABF=∠AFB=45°,
    ∴∠EMC=∠MCB+45°,
    而∠ECM=∠NCM+45°,
    ∵CM平分∠ACB交BN于M,
    ∴∠EMC=∠ECM,
    ∴EC=EM,
    ∴EM=EA,即(3)正确;
    ∵AB=AF,∠BAD=90°,EM=EA,
    ∴∠ABF=∠CBF=45°,∠EAM=∠AME,
    ∵△AEC是等腰直角三角形,
    ∴∠EAC=45°,
    ∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,
    ∴∠BAM=∠NAM,∴(4)正确;
    故选D.
    此题考查等腰三角形的判定与性质,圆周角定理,等腰直角三角形,解题关键在于作辅助线
    5、D
    【解析】
    由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.
    【详解】
    解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;
    B.平行四边形是轴对称图形;不正确;
    C.三角形的中位线将三角形分成面积相等的两个部分;不正确;
    D.一组对边平行,一组对角相等的四边形是平行四边形;正确;
    故选:D.
    本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.
    6、D
    【解析】
    作DF⊥CE于F,构建两个直角三角形,运用勾股定理逐一解答即可.
    【详解】
    过D作DF⊥CE于F,根据等腰三角形的三线合一,得:CF=1,
    在直角三角形CDF中,根据勾股定理,得:DF2=CD2-CF2=22-12=3,
    在直角三角形BDF中,BF=BC+CF=1+1=2,
    根据勾股定理得:BD=,
    故选D.
    本题考查了等边三角形的性质,勾股定理等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.
    7、C
    【解析】
    根据一次函数的图象和两函数的交点坐标即可得出答案
    【详解】
    解:从图象得到,当x>-2时,的图象在函数y=ax-3的图象上
    ∴不等式3x+b>ax-3的解集是x>-2,
    故选:C
    此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象
    8、D
    【解析】
    分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
    详解:,
    解①得:x>﹣2,
    解②得:x<1,
    则不等式组的解集是:﹣2<x<1.
    故选D.
    点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    ∵将△ABC绕点B顺时针旋转60°,得到△BDE,
    ∴△ABC≌△BDE,∠CBD=60°,
    ∴BD=BC=12cm,
    ∴△BCD为等边三角形,
    ∴CD=BC=BD=12cm,
    在Rt△ACB中,AB===13,
    △ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1(cm),
    故答案为1.
    考点:旋转的性质.
    10、四.
    【解析】
    把点A(a,1-a)代入直线y=2x-5求出a的值,进而可求出A点的坐标,再根据各象限内点的坐标特点判断出A点所在的象限即可.
    【详解】
    把点A(a,1−a)代入直线y=2x−5得,2a−5=1−a,解得a=2,
    故A点坐标为(2,−1),
    由A点的坐标可知,A点落在第四象限.
    故答案为:四.
    本题考查了一次函数图象上点的坐标特征,牢牢掌握一次函数图像上的坐标特征是解答本题的关键.
    11、x>5
    【解析】
    若代数式 有意义,则分母即≠0,可得出x≠5.根据根式的性质能够得出x-5≥0,结合前面x≠5,即可得出x的取值范围.
    【详解】
    若代数式有意义,
    则≠0,得出x≠5.
    根据根式的性质知中被开方数x-5≥0
    则x≥5,
    由于x≠5,则可得出x>5,
    答案为x>5.
    本题主要考查分式及根式有意义的条件,易错点在于学生容易漏掉其中之一.
    12、①③④
    【解析】
    根据正方形、平行四边形、菱形和矩形的判定,对选项一一分析,选择正确答案.
    【详解】
    ①矩形的对角线互相平分且相等,故正确;
    ②对角线相等的平行四边形是矩形,故错误;
    ③菱形的每一条对角线平分一组对角,这是菱形的一条重要性质,故正确;
    ④一条对角线平分一组对角的平行四边形是菱形,故正确.
    故答案为①③④.
    考查了正方形、平行四边形、菱形和矩形的判定方法.解答此题的关键是熟练掌握运用这些判定.
    13、
    【解析】
    首先根据一次函数y=2x与y=6-kx图象的交点纵坐标为4,代入一次函数y=2x求得交点坐标为(2,4),然后代入y=6-kx求得k值即可.
    【详解】
    ∵一次函数y=2x与y=6-kx图象的交点纵坐标为2,
    ∴4=2x,
    解得:x=2,
    ∴交点坐标为(2,4),
    代入y=6-kx,6-2k=4,解得k=1.
    故答案为:1.
    本题考查了两条直线平行或相交问题,解题的关键是交点坐标适合y=2x与y=6-kx两个解析式.
    三、解答题(本大题共5个小题,共48分)
    14、(1)15,;(2)s=t;(2)2千米
    【解析】
    (1)根据购物时间=离开时间﹣到达时间即可求出小聪在超市购物的时间;再根据速度=路程÷时间即可算出小聪返回学校的速度;
    (2)根据点的坐标利用待定系数法即可求出小明离开学校的路程s与所经过的时间t之间的函数关系式;
    (2)根据点的坐标利用待定系数法即可求出当20≤s≤45时小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式,令两函数关系式相等即可得出关于t的一元一次方程,解之即可求出t值,再将其代入任意一函数解析式求出s值即可.
    【详解】
    解:(1)20﹣15=15(分钟);
    4÷(45﹣20)=(千米/分钟).
    故答案为:15;.
    (2)设小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=mt+n,
    将(0,0)、(45,4)代入s=mt+n中,
    ,解得:,
    ∴s=t.
    ∴小明离开学校的路程s与所经过的时间t之间的函数关系式为s=t.
    (2)当20≤s≤45时,设小聪离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式为s=kt+b,将(20,4)、(45,0)代入s=kt+b,
    ,解得:,
    ∴s=﹣t+1.
    令s=t=﹣t+1,
    解得:t=,
    ∴s=t=×=2.
    答:当小聪与小明迎面相遇时,他们离学校的路程是2千米.
    本题考查了一次函数的应用以及待定系数法求一次函数解析式,解题的关键是:(1)根据数量关系列式计算;(2)根据点的坐标利用待定系数法求出函数关系式;(2)根据点的坐标利用待定系数法求出函数关系式.
    15、(1)y1=0.6x, y2=0.3x+600;(2)当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.
    【解析】
    (1)选择铁路运输时所需的费用y1=每千克运费0.6元×牛奶重量,选择公路运输时所需的费用y2=每千克运费0.3元×牛奶重量+600元;
    (2)当选择铁路运输比较合算时y1<y2,进而可得不等式0.6x<0.3x+600,当选择公路运输比较合算时,0.6x>0.3x+600,分别解不等式即可.
    【详解】
    解:(1)由题意得:y1=0.6x, y2=0.3x+600;
    (2)当选择铁路运输比较合算时,0.6x<0.3x+600,
    解得:x<2000,
    ∵x>0,
    ∴0<x<2000,
    当选择公路运输比较合算时,0.6x>0.3x+600,
    解得:x>2000,
    答:当运输牛奶大于0kg小于2000kg时,选择铁路运输比较合算;当运输牛奶大于2000kg时,选择公路运输比较合算.
    此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.
    16、(1)①△CBH,②AG1+CG1=GH 1(1)10+8
    【解析】
    探究与证明(1)①由题意可得AB=BC,BG=BH,∠ABG=∠CBH 可证△ABG≌△BCH
    ②由△ABG≌△BCH可得AG=CH,∠ACH=90° 可得AG、CG、GH之间的数量关系.
    (1)连接CH,可证△ABG≌△BCH,可得△CHG是直角三角形,则AG1+CG1=GH1,且HG1=BG1+BH1=1BG1,可得线段AG、CG、BG之间.
    应用:(3)连接BD交AC于O,由正方形ABCD可得AC⊥BD,AO=BO=CO=1,则根据正方形GBMN的面积=BG1=GO1+BO1.可求正方形GBMN的面积.
    【详解】
    解:探究与证明:(1)①△CBH,②AG1+CG1=GH 1
    理由如下:
    ∵ABCD是正方形
    ∴AB=CB,∠ABC=90°,∠BAC=∠BCA=45°
    又∵GB⊥BH
    ∴∠ABG=∠CBH且BG=BH,AB=BC
    ∴△ABG≌△BCH
    ∴∠BAC=∠BCH=45°,AG=CH
    ∴∠GCH=90°
    在Rt△GCH中,CH1+CG1=GH 1
    ∴AG1+CG1=GH 1
    (1)
    如图1,连CH
    ∵四边形ABCD是正方形
    ∴∠ABC=90°,AB=BC
    ∵∠GBH=90°
    ∴∠ABC+∠GBC=∠GBH+∠GBC
    即:∠ABG=∠CBH
    又∵BH=BG
    ∴△ABG≌△CBH
    ∴AG=CH,∠BCH=∠BAC=45°
    ∴∠ACH=∠ACB+∠BCH=45°+45°=90°
    ∴AG⊥CH
    ∴CH1+CG1=GH 1
    ∴AG1+CG1=GH1
    ∵HG1=BG1+BH1=1BG1
    ∴AG1+CG1=1BG1
    应用:(3)如图连接BD交AC于O
    ∵四边形ABCD 是正方形,AD=4,
    ∴AC=4,BO=AO=DO=CO=1,AC⊥BD,
    ∴BG1=GO1+BO1,
    ∵S正方形GBNM=BG1=GO1+BO1=(1+1)1+(1)1=10+8.
    本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是本题关键.
    17、∠EBF=20°,∠FBC=40°.
    【解析】
    试题分析:在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.
    解:在Rt△ABF中,∠A=70,CE,BF是两条高,
    ∴∠EBF=20°,∠ECA=20°,
    又∵∠BCE=30°,
    ∴∠ACB=50°,
    ∴在Rt△BCF中∠FBC=40°.
    18、(1);(2)平行四边形的周长是.
    【解析】
    (1)根据∠BEC=180°﹣(∠EBC+∠ECB),把∠EBC+∠ECB用角平分线定义转化为∠ABC与∠DCB和的一半即可;
    (2)根据角平分线和平行线得到AE=AB,DE=DC,由此可得平行四边形ABCD周长=6AB.
    【详解】
    解:(1) ∵四边形是平行四边形

    又∵平分和
    .
    ∴∠BEC=180°﹣(∠EBC+∠ECB)=90°;
    (2)在中,.


    ,同理:
    ∵平行四边形中,,
    ∴平行四边形的周长是.
    本题主要考查了平行四边形的性质、勾股定理,解题的关键是通过角平分线和平行线转化线段.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    由图可知:两个一次函数的交点坐标为(-4,-2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.
    【详解】
    函数y=ax+b和y=kx的图象交于点P(-4,-2),
    即x=-4,y=-2同时满足两个一次函数的解析式.
    所以关于x,y的方程组的解是.
    故答案为:.
    本题考查了一次函数与二元一次方程组的关系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.
    20、30
    【解析】
    根据正方形的面积公式,运用勾股定理可得结论:四个小正方形的面积之和等于最大的正方形的面积64 cm1,问题即得解决.
    【详解】
    解:如图记图中三个正方形分别为P、Q、M.
    根据勾股定理得到:A与B的面积的和是P的面积;C与D的面积的和是Q的面积;而P、Q的面积的和是M的面积.
    即A、B、C、D的面积之和为M的面积.
    ∵M的面积是81=64,
    ∴A、B、C、D的面积之和为64,设正方形D的面积为x,
    ∴11+10+13+x=64,
    ∴x=30,
    故答案为30.
    本题主要考查勾股定理,把正方形的面积转化为相关直角三角形的边长,再通过勾股定理探索图形面积的关系是解决此类问题常见的思路.
    21、-1
    【解析】
    分析:根据点在曲线上点的坐标满足方程的关系,将点(-1,2)代入,得:,解得:k=-1.
    22、3
    【解析】
    先根据分式方程的求解去掉分式方程的分母,再把增根x=5代入即可求出a的值.
    【详解】

    去分母得2-(x-a)=7(x-5)
    把x=5代入得2-(5-a)=0,解得a=3
    故填:3.
    此题主要考查分式方程的求解,解题的关键是熟知分式方程增根的定义.
    23、72
    【解析】
    根据矩形的性质可得AB=CD,AD=BC,∠B=∠D=90°,再根据翻折变换的性质可得∠AFE=∠D=90°,AD=AF,然后根据同角的余角相等求出∠BAF=∠EFC,然后根据,设CE=3k,CF=4k,推出EF=DE=5k,AB=CD=8k,利用相似三角形的性质求出BF,再在Rt△ADE中,利用勾股定理构建方程即可解决问题.
    【详解】
    解:在矩形ABCD中,AB=CD,AD=BC,∠B=∠D=90°,
    ∵△ADE沿AE对折,点D的对称点F恰好落在BC上,
    ∴∠AFE=∠D=90°,AD=AF,
    ∵∠EFC+∠AFB=180°-90°=90°,
    ∠BAF+∠AFB=90°,
    ∴∠BAF=∠EFC,
    ∵,
    ∴设CE=3k,CF=4k,
    ∴,
    ∵∠BAF=∠EFC,且∠B=∠C=90°
    ∴△ABF∽△FCE,
    ∴,即,
    ∴BF=6k,
    ∴BC=BF+CF=10k=AD,
    ∵AE2=AD2+DE2,
    ∴500=100k2+25k2,
    ∴k=2
    ∴AB=CD =16cm,BC=AD=20cm,
    ∴四边形ABCD的周长=72cm
    故答案为:72.
    本题考查翻折变换,矩形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题.
    二、解答题(本大题共3个小题,共30分)
    24、(1)75;4;(2)CD=4.
    【解析】
    (1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性质可求出OD的值,进而可得出AD的值,由三角形内角和定理可得出∠ABD=75°=∠ADB,由等角对等边可得出AB=AD=4,此题得解;
    (2)过点B作BE∥AD交AC于点E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的长度,再在Rt△CAD中,利用勾股定理可求出DC的长,此题得解.
    【详解】
    解:(1)∵BD∥AC,
    ∴∠ADB=∠OAC=75°.
    ∵∠BOD=∠COA,
    ∴△BOD∽△COA,
    ∴.
    又∵AO=3,
    ∴OD=AO=,
    ∴AD=AO+OD=4.
    ∵∠BAD=30°,∠ADB=75°,
    ∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,
    ∴AB=AD=4.
    (2)过点B作BE∥AD交AC于点E,如图所示.
    ∵AC⊥AD,BE∥AD,
    ∴∠DAC=∠BEA=90°.
    ∵∠AOD=∠EOB,
    ∴△AOD∽△EOB,
    ∴.
    ∵BO:OD=1:3,
    ∴.
    ∵AO=3,
    ∴EO=,
    ∴AE=4.
    ∵∠ABC=∠ACB=75°,
    ∴∠BAC=30°,AB=AC,
    ∴AB=2BE.
    在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
    解得:BE=4,
    ∴AB=AC=8,AD=1.
    在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,
    解得:CD=4.
    本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD的值;(2)利用勾股定理求出BE、CD的长度.
    25、-x,0.
    【解析】
    括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,化简后在x的取值范围内选一个使原式有意义的数值代入进行计算即可.
    【详解】
    原式=
    =
    =
    =-x, ,
    因为 ,所以x=0 时,原式=0.
    本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.
    26、(1)见解析;(2)两条平行线被第三条直线所截,同旁内角的平分线互相垂直
    【解析】
    (1)先根据AB∥CD求出∠BEF与∠DFE的关系,再由角平分线的性质求出∠FEG+∠EFG的度数,然后由三角形内角和定理即可求出∠EGF的度数,进而可得结论;
    (2)根据(1)的结论写出所证命题即可.
    【详解】
    (1)证明:∵AB∥CD(已知),
    ∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补),
    ∵EG平分∠BEF,FG平分∠DFE(已知),
    ∴∠GEF=∠BEF,∠GFE=∠DFE(角平分线的定义),
    ∴∠GEF+∠GFE=(∠BEF+∠DFE)(等式的性质),
    ∴∠GEF+∠GFE=×180°=90°(等量代换),
    在△EGF中,∠GEF+∠GFE+∠G=180°(三角形的内角和定理),
    ∴∠G=180°-90°=90°(等式性质),
    ∴EG⊥FG( 垂直的定义);
    (2)用文字语言可表示为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.
    故答案为:两条平行线被第三条直线所截,同旁内角的平分线互相垂直.
    本题考查的是平行线的性质、角平分线的性质和三角形内角和定理,属于基础题型,熟练掌握上述基本知识是解题关键.
    题号





    总分
    得分
    批阅人

    相关试卷

    四川省德阳中江县初中2023-2024学年数学九年级第一学期期末达标测试试题含答案:

    这是一份四川省德阳中江县初中2023-2024学年数学九年级第一学期期末达标测试试题含答案,共7页。试卷主要包含了计算的结果等于,下列函数的图象,不经过原点的是,矩形不具备的性质是等内容,欢迎下载使用。

    2023-2024学年四川省德阳中江县联考数学九年级第一学期期末达标检测模拟试题含答案:

    这是一份2023-2024学年四川省德阳中江县联考数学九年级第一学期期末达标检测模拟试题含答案,共8页。试卷主要包含了若,面积之比为,则相似比为等内容,欢迎下载使用。

    四川省德阳中江县初中2023-2024学年八年级数学第一学期期末统考模拟试题含答案:

    这是一份四川省德阳中江县初中2023-2024学年八年级数学第一学期期末统考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,满足的整数是,计算的结果是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map