2024年四川省巴中学市通江县数学九年级第一学期开学监测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)不等式组的解集是x>1,则m的取值范围是( )
A.m≥1B.m≤1C.m≥0D.m≤0
2、(4分)如图,在矩形ABCD中,对角线相交于点,则AB的长是
A.3cmB.6cmC.10cmD.12cm
3、(4分)图中两直线L1,L2的交点坐标可以看作方程组( )的解.
A.B.C.D.
4、(4分)下列各组数据中,能够成为直角三角形三条边长的一组数据是( ).
A.B.C.D.0. 3,0. 4,0. 5
5、(4分)对四边形ABCD添加以下条件,使之成为平行四边形,正面的添加不正确的是( )
A.AB∥CD,AD=BCB.AB=CD,AB∥CD
C.AB=CD,AD=BCD.AC与BD互相平分
6、(4分)如图,已知直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),则关于x的不等式3x+1<mx+n的解集为( )
A.x>﹣3B.x<﹣3C.x<﹣8D.x>﹣8
7、(4分)在实验课上,小亮利用同一块木板测得小车从不同高度与下滑的时间的关系如下表:
下列结论错误的是( )
A.当时,约秒
B.随高度增加,下滑时间越来越短
C.估计当时,一定小于秒
D.高度每增加了,时间就会减少秒
8、(4分)在平行四边形ABCD中,∠A+∠C=160°,则∠B的度数是( )
A.130°B.120°C.100°D.90°
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.
10、(4分)已知分式,当x__________时,分式无意义?当x____时,分式的值为零?当x=-3时,分式的值为_____________.
11、(4分)已知圆锥的侧面积为6兀,侧面展开图的圆心角为60º,则该圆锥的母线长是________。
12、(4分)若<0,则代数式可化简为_____.
13、(4分)如图,在四边形中,,,,,且,则______度.
三、解答题(本大题共5个小题,共48分)
14、(12分)在如图所示的平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,根据图象写出:
(1)方程-x+4=2x-5的解;
(2)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?
15、(8分)如图,点P是正方形ABCD内一点,连接CP,将线段CP绕点C顺时针旋转90°,得线段CQ,连接BP,DQ.
(1)求证:△BCP≌△DCQ;
(2)延长BP交直线DQ于点E.
①如图2,求证:BE⊥DQ;
②若△BCP是等边三角形,请画出图形,判断△DEP的形状,并说明理由.
16、(8分)如图,直线y=﹣2x+3与x轴相交于点A,与y轴相交于点B.
(1)求A,B两点的坐标;
(2)过B点作直线BP与x轴相交于点P,且使OP=2OA,求△ABP的面积.
17、(10分)计算
(1)计算: (2)
18、(10分)某超市出售甲、乙、丙三种糖果,其售价分别为5元/千克,12元/千克,20元/千克,为满足客多样化需求,超市打算把糖果混合成杂拌糖出售,如果按照如图所示的扇形统计图中甲、乙、丙三种糖果的比例混合,这种新混合的杂排糖的售价应该为多少元/千克?
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .
20、(4分)甲、乙两车分别从A、B两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B地后马上以另一速度原路返回A地(掉头的时间忽略不计),乙车到达A地以后即停在地等待甲车.如图所示为甲乙两车间的距离y(千米)与甲车的行驶时间t(小时)之间的函数图象,则当乙车到达A地的时候,甲车与A地的距离为_____千米.
21、(4分)一次函数y=-2x+4的图象与x轴交点坐标是______,与y轴交点坐标是_________
22、(4分)已知等边三角形的边长是2,则这个三角形的面积是_____.(保留准确值)
23、(4分)已知平行四边形ABCD中,∠B+∠D=270°,则∠C=________.
二、解答题(本大题共3个小题,共30分)
24、(8分)在平面直角坐标系中,点A,B分别是x轴正半轴与y轴正半轴上一点,OA=m,OB=n,以AB为边在第一象限内作正方形ABCD.
(1)若m=4,n=3,直接写出点C与点D的坐标;
(2)点C在直线y=kx(k>1且k为常数)上运动.
①如图1,若k=2,求直线OD的解析式;
②如图2,连接AC、BD交于点E,连接OE,若OE=2OA,求k的值.
25、(10分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:
(1)参加这次跳绳测试的共有 人;
(2)补全条形统计图;
(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是 ;
(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.
26、(12分)为选拔优秀选手参加瑶海区第八届德育文化艺术节“诵经典”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示
(1)根据图示填写下表
(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
(3)计算两班复赛成绩的方差,并说明哪个班五名选手的成绩较稳定.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.
【详解】
解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.
故选D.
本题考查了不等式组的解集的确定.
2、A
【解析】
试题解析:∵四边形ABCD是矩形,
∴OA=OC=OB=OD=3,
∴△AOB是等边三角形,
∴AB=OA=3,
故选A.
点睛:有一个角等于得等腰三角形是等边三角形.
3、B
【解析】
分析:
根据图中信息分别求出直线l1和l2的解析式即可作出判断.
详解:
设直线l1和l2的解析式分别为,根据图中信息可得:
, ,
解得: ,,
∴l1和l2的解析式分别为,即,,
∴直线l1和l2的交点坐标可以看作方程 的交点坐标.
故选B.
点睛:根据图象中的信息由待定系数法求得直线l1和l2的解析式是解答本题的关键.
4、D
【解析】
先根据三角形的三边关系定理看看能否组成三角形,再根据勾股定理的逆定理逐个判断即可.
【详解】
A、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;
B、(32)2+(42)2≠(52)2,即三角形不是直角三角形,故本选项不符合题意;
C、()2+()2≠()2,即三角形不是直角三角形,故本选项不符合题意;
D、0.32+0.42=0.52,即三角形是直角三角形,故本选项符合题意;
故选:D.
考查了三角形的三边关系定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.
5、A
【解析】
根据平行四边形的判定方法依次判定各项后即可解答.
【详解】
选项A,AB∥CD,AD=BC,一组对边平行,另一组对边相等的四边形不一定是平行四边形,选项A不能够判定四边形ABCD是平行四边形;
选项B,AB=CD,AB∥CD,一组对边平行且相等的四边形是平行四边形,选项B能够判定四边形ABCD是平行四边形;
选项C,AB=CD,AD=BC,两组对边分别相等的四边形是平行四边形,选项C能够判定四边形ABCD是平行四边形;
选项D,AC与BD互相平分,对角线互相平分的四边形是平行四边形,选项D能够判定四边形ABCD是平行四边形.
故选A.
本题考查了平行四边形的判定方法,熟练运用判定方法是解决问题的关键.
6、B
【解析】
先把点P坐标代入l1求出a,然后观察函数图象即可.
【详解】
解:∵直线l1:y=3x+1和直线l2:y=mx+n交于点P(a,﹣8),
∴3a+1=﹣8,
解得:a=﹣3,
观察图象知:关于x的不等式3x+1<mx+n的解集为x<﹣3,
故选:B.
一元一次不等式和一次函数是本题的考点,根据题意求出a的值是解题的关键.
7、D
【解析】
一个用图表表示的函数,根据给出的信息,对四个选项逐一分析,即可解答.
【详解】
A选项:当h=40时,t约2.66秒;
B选项:高度从10cm增加到50cm,而时间却从3.25减少到2.56;
C选项:根据B中的估计,当h=80cm时,t一定小于2.56秒;
D选项:错误,因为时间的减少是不均匀的;
故选:D.
考查了函数的概念,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数,记作y=f(x).
8、C
【解析】
分析:直接利用平行四边形的对角相等,邻角互补即可得出答案.
详解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°.
∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B的度数是:100°.
故选C.
点睛:本题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、8或1
【解析】
解:如图所示:①当AE=1,DE=2时,
∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,
∴平行四边形ABCD的周长=2(AB+AD)=8;
②当AE=2,DE=1时,同理得:AB=AE=2,
∴平行四边形ABCD的周长=2(AB+AD)=1;
故答案为8或1.
10、 -5
【解析】
根据分式无意义的条件是分母为0可得第一空,根据分子为0,分母不为0时分式的值为0可得第二空,将的值代入分式中即可求值,从而得出第三空的答案.
【详解】
根据分式无意义的条件可知,当时,分式无意义,此时;
根据分式的值为0的条件可知,当时,分式的值为0,此时;
将 x的值代入分式中,得;
故答案为: .
本题主要考查分式无意义,分式的值为0以及分式求值,掌握分式无意义,分式的值为0的条件是解题的关键.
11、6
【解析】
根据扇形的面积计算公式:,把相应数值代入即可.
【详解】
解:设母线长为r,圆锥的侧面展开后是扇形,侧面积=6π,
∴r=6cm,
故答案是6cm.
本题考查了圆锥的计算,利用了扇形的面积公式求解,解题的关键是牢记圆锥的有关公式,难度不大.
12、
【解析】
二次根式有意义,就隐含条件b>1,由ab<1,先判断出a、b的符号,再进行化简即可.
【详解】
若ab<1,且代数式有意义;
故有b>1,a<1;
则代数式=|a|=-a.
故答案为:-a.
本题主要考查二次根式的化简方法与运用:当a>1时,=a;当a<1时,=-a;当a=1时,=1.
13、1
【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.
【详解】
∵AB=2,BC=2,∠ABC=90°,
∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.
考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
三、解答题(本大题共5个小题,共48分)
14、(1)x=3.(2)当x<3时,y1>y2.当x<2.5时,y1>0且y2<0.
【解析】
分析:(1)根据题意画出一次函数和的图象,根据两图象的交点即可得出x的值;
(2)根据函数图象可直接得出结论.
详解:(1)∵一次函数和的图象相交于点(3,1),
∴方程的解为x=3;
(2)由图象可知,
当时, 当时,且
点睛:考查一次函数与一元一次不等式,一次函数与一元一次方程,注意数形结合思想在解题中的应用.
15、(1)证明见解析;(2)①证明见解析;②作图见解析;△DEP为等腰直角三角形,理由见解析.
【解析】
(1)根据旋转的性质证明∠BCP=∠DCQ,得到△BCP≌△DCQ;
(2)①根据全等的性质和对顶角相等即可得到答案;
②根据等边三角形的性质和旋转的性质求出∠EPD=45°,∠EDP=45°,判断△DEP的形状.
【详解】
(1)证明:∵∠BCD=90°,∠PCQ=90°,
∴∠BCP=∠DCQ,
在△BCP和△DCQ中,
,
∴△BCP≌△DCQ;
(2)①如图b,
∵△BCP≌△DCQ,
∴∠CBF=∠EDF,又∠BFC=∠DFE,
∴∠DEF=∠BCF=90°,
∴BE⊥DQ;
②画图如下,
∵△BCP为等边三角形,
∴∠BCP=60°,
∴∠PCD=30°,又CP=CD,
∴∠CPD=∠CDP=75°,
又∠BPC=60°,∠CDQ=60°,
∴∠EPD=45°,∠EDP=45°,
∴△DEP为等腰直角三角形.
本题考查的是正方形的性质、三角形全等的判定和性质以及旋转的性质,掌握正方形的四条边相等、四个角都是直角,旋转的性质是解题的关键.
16、(1)A(,0),B(0,3);(2)或.
【解析】
分析:(1)由函数解析式,令y=0求得A点坐标,x=0求得B点坐标;
(2)有两种情况,若BP与x轴正方向相交于P点,则;若BP与x轴负方向相交于P点,则,由此求得的面积.
详解:(1)令y=0,得
∴A点坐标为
令x=0,得y=3,
∴B点坐标为(0,3);
∵
∴ 或
∴AP=或,
∴,或.
点睛:考查了一次函数的相关知识,是初中数学的常考题目,关键是求出一次函数与坐标轴的交点坐标.
17、(1);(2)
【解析】
(1)先根据算术平方根的代数意义,零指数幂的运算法则以及绝对值的意义进行化简,最后再进行加减运算;
(2)先进行分母有理化运算和根据完全平方公式去括号,然后合并即可.
【详解】
(1)原式
(2)原式
本题考查了二次根式的混合运算,同时还考查了绝对值和零指数幂.
18、这种新混合的杂排糖的售价应该为10.1元/千克.
【解析】
由扇形统计图中可以得到甲、乙、丙三种糖果所占的比例,然后根据加权平均数的计算方法求出结果即可.
【详解】
丙对应的百分比为1-50%-30%=20%
∴这种新混合物的杂拌糖的售价应该为5×50%+12×30%+20×20%=10.1(元/千克)
答:这种新混合的杂排糖的售价应该为10.1元/千克.
考查扇形统计图的特征、加权平均数的计算方法,明确和理解加权平均数中“权”是正确解答的前提.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、34
【解析】
试题解析:解:设这7个数的中位数是x,
根据题意可得:,
解方程可得:x=34.
考点:中位数、平均数
点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.
20、630
【解析】
分析:两车相向而行5小时共行驶了900千米可得两车的速度之和为180千米/时,当相遇后车共行驶了720千米时,甲车到达B地,由此则可求得两车的速度.再根据甲车返回到A地总用时16.5小时,求出甲车返回时的速度即可求解.
详解:设甲车,乙车的速度分别为x千米/时,y千米/时,
甲车与乙车相向而行5小时相遇,则5(x+y)=900,解得x+y=180,
相遇后当甲车到达B地时两车相距720千米,所需时间为720÷180=4小时,
则甲车从A地到B需要9小时,故甲车的速度为900÷9=100千米/时,乙车的速度为180-100=80千米/时,
乙车行驶900-720=180千米所需时间为180÷80=2.25小时,
甲车从B地到A地的速度为900÷(16.5-5-4)=120千米/时.
所以甲车从B地向A地行驶了120×2.25=270千米,
当乙车到达A地时,甲车离A地的距离为900-270=630千米.
点睛:利用函数图象解决实际问题,其关键在于正确理解函数图象横,纵坐标表示的意义,抓住交点,起点.终点等关键点,理解问题的发展过程,将实际问题抽象为数学问题,从而将这个数学问题变化为解答实际问题.
21、 (2,0) (0,4)
【解析】把y=0代入y=2x+4得:0=2x+4,x=−2,
令x=0,代入y=2x+4解得y=4,
∴一次函数y=2x+4的图象与y轴交点坐标这(0,4),
即一次函数y=2x+4与x轴的交点坐标是(−2,0),与y轴交点坐标这(0,4).
22、
【解析】
解:如图,过点A作AD⊥BC于点D,
∵等边三角形的边长是2,
∴BD=BC=×2=1,
在Rt△ABD中,AD= =
所以,三角形的面积=×2×=
故答案为:.
本题考查等边三角形的性质,比较简单,作出图形求出等边三角形的高线的长度是解题的关键.
23、45°
【解析】
试题解析:∵四边形ABCD为平行四边形,
∴AD∥BC,∠B=∠D,
且
故答案为
点睛:平行四边形的对角相等,邻角互补.
二、解答题(本大题共3个小题,共30分)
24、(1)C(3,7),D(7,4);(2)①y=x;②.
【解析】
(1)根据题意把m=4,n=3代入解答即可;
(2)①利用待定系数法确定函数关系式即可;
②根据B、D坐标表示出E点坐标,由勾股定理可得到m、n之间的关系式,用m表示出C点坐标,根据函数关系式解答即可.
【详解】
解:(1)∵OA=m,OB=n,以AB为边在第一象限内作正方形ABCD,
∴C(n,m+n),D(m+n,m),
把m=4,n=3代入可得:
C(3,7),D(7,4),
(2)①设C(a,2a),由题意可得:,
解得:m=n=a,
∴D(2a,a),
∴直线OD的解析式为:y=x,
②由B(0,n),D(m+n,m),
可得:E(,),OE=OA,
∴()2+()2=8m2,
可得:(m+n)2=16m2,
∴m+n=4m,n=3n,
∴C(3m,4m),
∴直线OC的解析式为:y=x,
可得:k=.
故答案为(1)C(3,7),D(7,4);(2)①y=x;②.
此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.
25、 (1)50;(2)见解析;(3)72°;(4)96人.
【解析】
(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;
(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;
(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;
(4)利用样本估计总体进而利用“优秀”所占比例求出即可.
【详解】
(1)由扇形统计图和条形统计图可得:
参加这次跳绳测试的共有:20÷40%=50(人);
故答案为:50;
(2) 由(1)的优秀的人数为:50−3−7−10−20=10人,
(3) “中等”部分所对应的圆心角的度数是:×360°=72°,
故答案为:72°;
(4)全年级优秀人数为:(人).
此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.
26、(1)
(2)九(1)班成绩好些;
(3)九(1)班五名选手的成绩较稳定.
【解析】
(1)观察图分别写出九(1)班和九(2)班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;
(2)在平均数相同的情况下,中位数高的成绩较好;
(3)根据方差公式计算即可:(可简单记忆为“等于差方的平均数”).
【详解】
解:(1)由图可知九(1)班5名选手的复赛成绩为:75、80、85、85、100,
∴九(1)的中位数为85,
把九(2)的成绩按从小到大的顺序排列为:70、75、80、100、100,
∴九(2)的平均数为(70+75+80+100+100)÷5=85,
九(2)班的众数是100;
(2)九(1)班成绩好些.因为九(1)班的中位数高,所以九(1)班成绩好些.
(3)[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,
[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=1.
∵,
∴九(1)班五名选手的成绩较稳定.
本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.
题号
一
二
三
四
五
总分
得分
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
九(2)
80
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
85
九(2)
85
80
100
班级
平均数(分)
中位数(分)
众数(分)
九(1)
85
85
85
九(2)
85
80
100
2024年甘肃省平凉市铁路中学九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024年甘肃省平凉市铁路中学九年级数学第一学期开学监测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年安阳市第九中学九年级数学第一学期开学监测模拟试题【含答案】: 这是一份2024年安阳市第九中学九年级数学第一学期开学监测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024-2025学年四川省通江县涪阳中学数学九年级第一学期开学教学质量检测模拟试题【含答案】: 这是一份2024-2025学年四川省通江县涪阳中学数学九年级第一学期开学教学质量检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

