2024年江苏省大丰市万盈初级中学九上数学开学质量跟踪监视模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,将△ABC 绕点 A 按顺时针方向旋转 120°得到△ADE,点 B 的对应点是点 E,点 C 的对应点是点 D,若∠BAC=35°,则∠CAE 的度数为( )
A.90°B.75°C.65°D.85°
2、(4分)下列命题中,真命题是( )
A.两条对角线相等的四边形是矩形;
B.两条对角线互相垂直的四边形是菱形;
C.两条对角线互相垂直且相等的四边形是正方形;
D.两条对角线相等的梯形是等腰梯形
3、(4分)下列根式是最简二次根式的是( )
A.B.C.D.
4、(4分)如图,已知正比例函数与一次函数的图象交于点.下面四个结论中正确的是( )
A.B.
C.当时,D.当时,
5、(4分)四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是( )
A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
6、(4分)下列计算不正确的是( )
A.B.C.D.
7、(4分)如图,在▱ABCD中,∠A=140°,则∠B的度数是( )
A.40°B.70°C.110°D.140°
8、(4分)一个大矩形按如图方式分割成6个小矩形,且只有标号为②,④的两个小矩形为正方形,若要求出△ABC的面积,则需要知道下列哪个条件? ( )
A.⑥的面积B.③的面积C.⑤的面积D.⑤的周长
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)分解因式:2x2-8x+8=__________.
10、(4分)在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.
11、(4分)某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的关系:______________.
12、(4分)一次函数y=2x-6的图像与x轴的交点坐标为 .
13、(4分)一次函数与轴的交点是__________.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图分别是的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在以下图中各画一个图形,所画图形各顶点必须在小正方形的顶点上,并且分别满足以下要求:
(1)在下图中画一个以线段AB为一边的直角,且的面积为2;
(2)在下图中画一个以线段AB为一边的四边形ABDE,使四边形ABDE是中心对称图形且四边形ABDE的面积为1.连接AD,请直接写出线段AD的长.线段AD的长是________
15、(8分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)
16、(8分)关于x、y的方程组的解满足x﹣2y≥1,求满足条件的k的最大整数值.
17、(10分)列分式方程解应用题:今年植树节,某校师生到距学校20千米的公路旁植树,一班师生骑自行车先走,走了16千米后,二班师生乘汽车出发,结果同时到达.已知汽车的速度比自行车的速度每小时快60千米,求两种车的速度各是多少?
18、(10分)已知,矩形中,,的垂直平分线分别交于点,垂足为.
(1)如图1,连接,求证:四边形为菱形;
(2)如图2,动点分别从两点同时出发,沿和各边匀速运动一周,即点自停止,点自停止.在运动过程中,
①已知点的速度为每秒,点的速度为每秒,运动时间为秒,当四点为顶点的四边形是平行四边形时,则____________.
②若点的运动路程分别为 (单位:),已知四点为顶点的四边形是平行四边形,则与满足的数量关系式为____________.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,DE∥BC,,则=_______.
20、(4分)已知点,关于x轴对称,则________.
21、(4分)反比例函数与一次函数图象的交于点,则______.
22、(4分)分解因式b2(x﹣3)+b(x﹣3)=_____.
23、(4分)下列4种图案中,既是轴对称图形,又是中心对称图形的有__________个.
二、解答题(本大题共3个小题,共30分)
24、(8分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为 ;②点B的坐标为 (直接写结果);
(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点
C(-1,0),点A(0,4),试求直线AB的函数表达式;
(3)拓展研究:如图3,在平面直角坐标系中,点B(4;3),过点B作BAy轴,垂足为点A;作BCx轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.
25、(10分)已知,反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1.
(1)求这个一次函数的表达式;
(2)若点P(m,n)在反比例函数图象上,且点P关于x轴对称的点Q恰好落在一次函数的图象上,求m2+n2的值;
(3)若M(x1,y1),N(x2,y2)是反比例函数在第一象限图象上的两点,满足x2-x1=2,y1+y2=3,求△MON的面积.
26、(12分)如图,将菱形OABC放置于平面直角坐标系中,边OA与x轴正半轴重合,D为边OC的中点,点E,F,G分别在边OA,AB与BC上,若∠COA=60°,OA=4,则当四边形DEFG为菱形时,点G的坐标为_____.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
由题意可得∠BAE是旋转角为120°且∠BAC=35°,可求∠CAE的度数.
【详解】
∵将△ABC绕点A按顺时针方向旋转120°得到△ADE
∴∠BAE=120°且∠BAC=35°
∴∠CAE=85°
故选D.
本题考查了旋转的性质,关键是熟练运用旋转的性质解决问题.
2、D
【解析】
A、根据矩形的判定定理作出分析、判断;
B、根据菱形的判定定理作出分析、判断;
C、根据正方形的判定定理作出分析、判断;
D、根据等腰梯形的判定定理作出分析、判断.
【详解】
解:A、两条对角线相等的四边形不一定是矩形.例如等腰梯形的两条对角线也相等;故本选项错误;
B、两条对角线垂直的平行四边形是菱形;故本选项错误;
C、两条对角线垂直且相等的四边形也可能是等腰梯形;故本选项错误;
D、两条对角线相等的梯形是等腰梯形,此说法正确;故本选项正确;
故选:D.
本题综合考查了等腰梯形、正方形菱形以及矩形的判定.解答该题时,需要牢记常见的四边形的性质.
3、C
【解析】
根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.
【详解】
、,故此选项错误;
、,故此选项错误;
、是最简二次根式,故此选项正确;
、,故此选项错误.
故选:.
此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.
4、A
【解析】
利用两函数图象结合与坐标轴交点进而分别分析得出答案.
【详解】
∵,经过第一、三象限,
∴a>0,故A正确;
∵与y轴交在负半轴,
∴b>0,故B错误;
∵正比例函数,经过原点,
∴当x<0时, ;故C错误;
当x>2时, ,故D错误。
故选:A.
此题考查一次函数和正比例函数的图象与性质,解题关键在于结合函数图象进行判断.
5、C
【解析】
由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.
【详解】
如图所示:
需要添加的条件是AC⊥BD;理由如下:
∵四边形ABCD的对角线互相平分,
∴四边形ABCD是平行四边形,
∵AC⊥BD,
∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);
故选:C.
考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.
6、B
【解析】
根据二次根式的加减法对A、C进行判断;根据二次根式的除法法则对D进行判断;根据二次根式的乘法法则对B进行判断.
【详解】
解:A、原式==所以A选项正确;
B、原式=2,所以B选项正确;
C、原式=+,所以C选项错误;
D、原式=2,所以D选项正确.
故选C.
本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
7、A
【解析】
根据平行四边形的性质可知AD∥BC,从而∠A+∠B=180°,即可求出答案.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠A+∠B=180°,
∴∠B=180°-∠A=180°-140°=40°.
故选A.
此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.
8、A
【解析】
根据列式化简计算,即可得△ABC的面积等于⑥的面积.
【详解】
设矩形的各边长分别为a, b,x如图,则
∵=(a+b+x)(a+b)-a²-ab-b(b+x)= (a²+2ab+b²+ax+bx)-a²-ab-b²-bx
=ax
∴只要知道⑥的面积即可.故选A.
本题考查了推论与论证的知识,根据题意结合正方形的性质得出只有表示出矩形的各边长才可以求出面积,这也是解答本题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、2(x-2)2
【解析】
先运用提公因式法,再运用完全平方公式.
【详解】
:2x2-8x+8=.
故答案为2(x-2)2.
本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.
10、90分.
【解析】
试题分析:根据加权平均数的计算公式求解即可.
解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).
故答案为90分.
考点:加权平均数.
11、
【解析】
试题分析:本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.
解:根据题意得:
y=,
整理得:;
则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;
故答案为y=.
考点:分段函数.
12、(3,0).
【解析】
试题分析:把y=0代入y=2x-6得x=3,所以一次函数y=2x-6的图像与x轴的交点坐标为(3,0).
考点:一次函数的图像与x轴的交点坐标.
13、
【解析】
根据题目中的解析式,令y=0,求出相应的x的值,即可解答本题.
【详解】
解:解:∵,
∴当y=0时,0= ,得x=,
∴一次函数的图象与x轴交点坐标是(,0),
故答案为:(,0).
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
三、解答题(本大题共5个小题,共48分)
14、(1)见解析;(2)见解析,AD=.
【解析】
(1)根据正方形的性质和AB的长度作图即可;
(2)利用数形结合的思想即可解决问题,由勾股定理可求出AD的长度.
【详解】
(1)如图,
(2)如图,
,
AD==.
本题考查作图-应用与设计、勾股定理、平行四边形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题.
15、不能通过,理由见解析
【解析】
直接利用已知得出CF,CG的长,再利用勾股定理得出CF的长进而得出答案.
【详解】
不能通过.
如图,在AB之间找一点F,使BF=2.5m,过点F作GF⊥AB交CD于点G,
∵AB=3.3m,CA=0.7m,BF=2.5m,
∴CF=AB﹣BF+CA=1.5m,
∵∠ECA=60°,∠CGF=30°
∴CG=2CF=3m,
∴GF=≈2.55(m),
∵2.55<3
∴这辆货车在不碰杆的情况下,不能从入口内通过.
此题主要考查了勾股定理的应用,正确得出CG的长是解题关键.
16、满足条件的k的最大整数值为1.
【解析】
将两方程相减得出x,y的值,再把x,y的值代入x﹣1y≥1,即可解答
【详解】
解关于x,y的方程组 ,得 ,
把它代入x﹣1y≥1得,3﹣k﹣1(3k﹣6)≥1,
解得k≤1,
所以满足条件的k的最大整数值为1.
此题考查二元一次方程组的解和解一元一次不等式,解题关键在于求出x,y的值再代入
17、汽车和自行车的速度分别是75千米/时、15千米/时.
【解析】
试题分析:设自行车的速度为x千米/时,则汽车的速度为(x+60)千米/时,根据等量关系 :一班师生骑自行车走4千米所用时间=二班师生乘汽车20千米所用时间,列出方程即可得解.
试题解析:设自行车的速度为x千米/时,则汽车的速度为(x+60)千米/时,
根据题意得: ,
解得:x=15(千米/时),
经检验,x=15是原方程的解且符合题意.,
则汽车的速度为:(千米/时),
答:汽车和自行车的速度分别是75千米/时、15千米/时.
18、(1)见解析;(2)①;②
【解析】
(1)先证明四边形AFCE为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;
(2)①分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可;
②分三种情况讨论可知a与b满足的数量关系式.
【详解】
(1)证明:∵四边形是矩形,
∴
∴,
∵垂直平分,垂足为,
∴,
∴,
∴,
∴四边形为平行四边形,
又∵
∴四边形为菱形,
(2)①秒.
显然当点在上时,点在上,此时四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.
∴以四点为顶点的四边形是平行四边形时,
∴点的速度为每秒,点的速度为每秒,运动时间为秒,
∴,
∴,解得
∴以四点为顶点的四边形是平行四边形时,秒.
②与满足的数量关系式是,
由题意得,以四点为顶点的四边形是平行四边形时,
点在互相平行的对应边上,分三种情况:
i)如图1,当点在上、点在上时,,即,得.
ii)如图2,当点在上、点在上时,,即,得.
iii)如图3,当点在上、点在上时,,即,得.
综上所述,与满足的数量关系式是.
此题考查线段垂直平分线的性质,菱形的判定及性质,勾股定理,全等三角形的判定及性质,平行四边形的判定及性质,解题中注意分类讨论的思想.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、
【解析】
依题意可得△ADE∽△ABC,根据相似三角形的对应边的比相等即可得出比值.
【详解】
解:∵DE∥BC
∴△ADE∽△ABC
∴
∵
∴
∴,
故答案为:.
本题主要考查了相似三角形的性质和判定,熟练掌握相关的知识是解题的关键.
20、
【解析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.
【详解】
解:∵点,关于x轴对称,
∴,
∴.
故答案为:.
此题主要考查了关于x、y轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.
21、-1
【解析】
试题分析:将点A(-1,a)代入一次函数可得:-1+2=a,则a=1,将点A(-1,1)代入反比例函数解析式可得:k=1×(-1)=-1.
考点:待定系数法求反比例函数解析式
22、b(x﹣3)(b+1)
【解析】
用提公因式法分解即可.
【详解】
原式= b(x﹣3)·b+b(x﹣3)=b(x﹣3)(b+1).
故答案为:b(x﹣3)(b+1)
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
23、1.
【解析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A. 是轴对称图形,也是中心对称图形。故正确
B. 不是轴对称图形,也不是中心对称图形。故错误;
C. 不是轴对称图形,不是中心对称图形。故错误;
D. 是轴对称图形,不是中心对称图形。故错误。
故答案为:1
此题考查中心对称图形,轴对称图形,难度不大
二、解答题(本大题共3个小题,共30分)
24、(1),(2)(3),
【解析】
由可得,,,,易证≌,,,因此;
同可证≌,,,,求得最后代入求出一次函数解析式即可;
分两种情况讨论当点Q在x轴下方时,当点Q在x轴上方时根据等腰构建一线三直角,从而求解.
【详解】
如图1,作轴,轴.
,
,,
,
≌,
,,
.
故答案为,;
如图2,过点B作轴.
,
≌,
,,
.
设直线AB的表达式为
将和代入,得
,
解得,
直线AB的函数表达式.
如图3,设,分两种情况:
当点Q在x轴下方时,轴,与BP的延长线交于点.
,
,
在与中
≌
,
,,
,
解得
此时点P与点C重合,
;
当点Q在x轴上方时,轴,与PB的延长线交于点.
同理可证≌.
同理求得
综上,P的坐标为:,
本题考查了一次函数与三角形的全等,熟练掌握一次函数的性质与三角形全等判定是解题的关键.
25、(1)y=-x-2;(2)m2+n2=12;(2)S△MON=2
【解析】
(1)先求得A、B的坐标,然后根据待定系数法求解即可;
(2)由点P与点Q关于x轴对称可得点Q的坐标,然后根据图象上点的坐标特征可求得mn=2,n=m+2,然后代入所求式子整理化简即得结果;
(2)如图,过M作MG⊥x轴于G,过N作NH⊥x轴于H,根据反比例函数系数k的几何意义,利用S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG即可求得结果.
【详解】
解:(1)∵反比例函数y=的图象和一次函数的图象交于A、B两点,点A的横坐标是-1,点B的纵坐标是-1,
∴A(﹣1,﹣2),B(﹣2,﹣1),
设一次函数的表达式为y=kx+b,把A(﹣1,﹣2),B(﹣2,﹣1)代入,得:
,解得,
∴这个一次函数的表达式为y=﹣x﹣2;
(2)∵点P(m,n)与点Q关于x轴对称,∴Q(m,-n),
∵点P(m,n)在反比例函数图象上,∴mn=2,
∵点Q恰好落在一次函数的图象上,∴﹣n=﹣m﹣2,即n=m+2,
∴m(m+2)=2,∴m2+2m=2,
∴m2+n2=m2+(m+2)2=2m2+6m+9=2(m2+2m)+9=2×2+9=12;
(2)如图,过M作MG⊥x轴于G,过N作NH⊥x轴于H,
∵M(x1,y1),N(x2,y2)是反比例函数y=在第一象限图象上的两点,
∴S△MOG=S△NOH==1,
∵x2-x1=2,y1+y2=2,
∴S△MON=S梯形MNHG+S△MOG-S△NOH=S梯形MNHG===2.
本题考查了反比例函数与一次函数图象上点的坐标特征、待定系数法求函数解析式、反比例函数系数k的几何意义以及坐标系中三角形的面积等知识,属于常考题型,熟练掌握函数图象上点的坐标特征和反比例函数系数k的几何意义是解题的关键.
26、(3,2 )
【解析】
作辅助线,构建全等三角形,证明,得,由中点得,根据直角三角形30度角的性质和勾股定理得:,,所以,证明,根据菱形的对角线互相垂直平分得:的长,从而得的长,可得结论.
【详解】
解:过作于,交的延长线于,连接、,交于点,
四边形是菱形,
,
,
,,
,
,
,
,
中,,
,
,,
,
四边形是菱形,
,,,
,
,
,,
四边形为矩形,
,,
,,,
,
,
四边形是平行四边形,
,
,
,
,,
故答案为:,.
本题考查坐标与图形的性质、菱形的性质、全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
题号
一
二
三
四
五
总分
得分
2024年湖北省黄冈市初级中学数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2024年湖北省黄冈市初级中学数学九上开学质量跟踪监视模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
江苏省江苏省大丰市万盈初级中学2023-2024学年数学九上期末联考模拟试题含答案: 这是一份江苏省江苏省大丰市万盈初级中学2023-2024学年数学九上期末联考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,关于抛物线的说法中,正确的是,若,则的值为等内容,欢迎下载使用。
江苏省江苏省大丰市万盈初级中学2023-2024学年八上数学期末学业质量监测模拟试题含答案: 这是一份江苏省江苏省大丰市万盈初级中学2023-2024学年八上数学期末学业质量监测模拟试题含答案,共6页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

