|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年安徽省亳州蒙城县联考九上数学开学统考试题【含答案】
    立即下载
    加入资料篮
    2024年安徽省亳州蒙城县联考九上数学开学统考试题【含答案】01
    2024年安徽省亳州蒙城县联考九上数学开学统考试题【含答案】02
    2024年安徽省亳州蒙城县联考九上数学开学统考试题【含答案】03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年安徽省亳州蒙城县联考九上数学开学统考试题【含答案】

    展开
    这是一份2024年安徽省亳州蒙城县联考九上数学开学统考试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,1.其中能作为直角三角形的三边长的有
    A.1组B.2组C.3组D.4组
    2、(4分)如图,在▱ABCD中,对角线AC、BD相交于点O,下列哪个条件不能判定▱ABCD是矩形的是( )
    A.AC=BDB.OA=OBC.∠ABC=90°D.AB=AD
    3、(4分)如果关于的分式方程有增根,则增根的值为( )
    A.0B.-1C.0或-1D.不存在
    4、(4分)使代数式有意义的x的取值范围是( )
    A.B.C.D.
    5、(4分)下列二次根式中,属于最简二次根式的是( )
    A.B. C.D.
    6、(4分)如图,在菱形ABCD中,DE⊥AB,=,BE=2,则tan∠DBE的值( )
    A.B.2C.D.
    7、(4分)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为( )
    A.13B.14C.15D.16
    8、(4分)如图,绕点逆时针旋转得到,若,,则的度数是( )
    A.B.
    C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,点B在线段AC上,且BC=2AB,点D,E分别是AB,BC的中点,分别以AB,DE,BC为边,在线段AC同侧作三个正方形,得到三个平行四边形(阴影部分).其面积分别记作S1,S2,S3,若S1+S3=15,则S2=_____.
    10、(4分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是_____
    11、(4分)在一次射击比赛中,甲、乙两名运动员 10 次射击的平均成绩都是 7 环,其中甲的成绩的方差为 1.2,乙的成绩的方差为 3.9,由此可知_____的成绩更稳定.
    12、(4分)如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.
    13、(4分)如图,在平行四边形中,于点,若,则的度数为________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图1,在△ABC中,按如下步骤作图:①以点A为圆心,AB长为半径画弧;②以点C为圆心,CB长为半径画弧,两弧相交于点D;③连结BD,与AC交于点E,连结AD,CD.
    (1)填空:△ABC≌△ ;AC和BD的位置关系是
    (2)如图2,当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论.
    (3)在(2)的条件下,若AC=8cm,BD=6cm,则点B到AD的距离是 cm,若将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长为 cm.
    15、(8分)在平面直角坐标中,边长为 2 的正方形 OABC 的两顶点 A、C 分别在 y 轴、x 轴的正半轴上,点 O 在原点.现将正方形 OABC 绕 O 点顺时针旋转,当 A 点第一次落在直线 y=x 上时停止旋转,旋转过程中,AB 边交直线 y=x于点 M,BC 边交 x 轴于点 N(如图).
    (1)求边 OA 在旋转过程中所扫过的面积;
    (2)旋转过程中,当 MN 和 AC 平行时,求正方形 OABC 旋转的度数;
    (3)试证明在旋转过程中, △MNO 的边 MN 上的高为定值;
    (4)设△MBN 的周长为 p,在旋转过程中,p 值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出 p 的值.
    16、(8分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
    (拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
    (应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
    17、(10分)阅读材料:
    关于的方程:
    的解为:,
    (可变形为)的解为:,
    的解为:,
    的解为:,
    …………
    根据以上材料解答下列问题:
    (1)①方程的解为 .
    ②方程的解为 .
    (2)解关于方程:
    ① ()
    ②()
    18、(10分)甲、乙两人参加操作技能培训,他们在培训期间参加的5次测试成绩(满分10分)记录如下:
    (1)若从甲、乙两人中选派一人参加操作技能大赛,你认为应选谁?为什么?
    (2)如果乙再测试一次,成绩为8分,请计算乙6次测试成绩的方差(结果保留小数点后两位).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)对一种环保电动汽车性能抽测,获得如下条形统计图.根据统计图可估计得被抽检电动汽车一次充电后平均里程数为______.
    20、(4分)如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的有_____(只填序号).
    21、(4分)一次函数的图像与两坐标轴围成的三角形的面积是_________.
    22、(4分)某校要从甲、乙两名跳远运动员挑选一人参加校际比赛.在十次选拔比赛中,他们的方差分别为S甲2=1.32,S乙2=1.26,则应选________参加这项比赛(填“甲”或者“乙”)
    23、(4分)若点P(3,2)在函数y=3x-b的图像上,则b=_________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)解不等式组:.
    25、(10分)为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况单位:元,并对销售金额进行分组,整理成如下统计表:
    28,8,18,63,15,30,70,42,36,47,
    25,58,64,58,55,41,58,65,72,30
    请将表格补充完整;
    用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;
    根据绘制的频数分布直方图,你能获取哪些信息?至少写出两条不同类型信息
    26、(12分)问题发现:
    (1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为 .
    问题探究:
    (2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC=90°,且AD=CD,连接DQ,求DQ的最小值;
    问题解决:
    (3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、C
    【解析】
    ①∵82+152=172,∴能组成直角三角形;
    ②∵52+122=132,∴能组成直角三角形;
    ③122+152≠202,∴不能组成直角三角形;
    ④72+242=12,∴能组成直角三角形.
    故选C.
    2、D
    【解析】
    根据平行四边形的性质,矩形的判定方法即可一一判断即可.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∵AC=BD,
    ∴ABCD是矩形,故A正确;
    ∵四边形ABCD是平行四边形,
    ∴AO=OC,BO=OD,
    ∵OA=OB,
    ∴AC=BD,
    ∴ABCD是矩形,故B正确;
    ∵四边形ABCD是平行四边形,
    ∵∠ABC=90°,
    ∴ABCD是矩形,故C正确;
    ∵四边形ABCD 是平行四边形,
    ∵AB=AD,
    ∴ABCD是菱形,故D错误.
    故选:D.
    本题考查了矩形的判定,平行四边形的性质,熟练掌握矩形的判定定理是解题的关键.
    3、A
    【解析】
    先把分式方程化成整式方程,再解整式方程求出x的值,根据方程有增根得出或,解出k的值即可得出答案.
    【详解】
    又方程有增根
    ∴或
    无解或k=0
    ∴k=0
    ∴增根的值为0
    故答案选择A.
    本题考查的是分式方程的增根问题,属于基础题型,解题关键是根据增根得出整式方程有解,而分式方程无解,即整式方程求出的解使得分式方程的分母等于0.
    4、A
    【解析】
    根据二次根式被开方数为非负数可得关于x的不等式,解不等式即可得.
    【详解】
    使代数式有意义,则x-10≥0,
    解得:x≥10,
    故选A.
    本题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
    5、C
    【解析】
    满足下列两个条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.
    【详解】
    A、=,故A不是;
    B、=,故B不是;
    C、,是;
    D、=,故D不是.
    故选C
    考查了最简二次根式的概念,熟练掌握最简二次根式所需要满足的条件是解题的关键.
    6、B
    【解析】
    试题解析:
    设AE=3x,


    ∴BE=5x−3x=2x=2,
    ∴x=1,
    ∴AD=5,AE=3,


    故选B.
    7、D
    【解析】
    先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.
    【详解】
    如图所示:
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∴∠DAE=∠AEB,
    ∵∠BAD的平分线交BC于点E,
    ∴∠DAE=∠BAE,
    ∴∠BAE=∠BEA,
    ∴AB=BE,同理可得AB=AF,
    ∴AF=BE,
    ∴四边形ABEF是平行四边形,
    ∵AB=AF,
    ∴四边形ABEF是菱形,
    ∴AE⊥BF,OA=OE,OB=OF=BF=6,
    ∴OA==8,
    ∴AE=2OA=16.
    故选D.
    本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.
    8、C
    【解析】
    根据旋转的性质和三角形内角和180度求出【详解】
    解:根据旋转的性质可知:∠C=∠A=110°
    在△COD中,∠COD=180°-110°-40°=30°
    旋转角∠AOC=85°,所以∠α=85°-30°-55°
    故选:C.
    本题主要考查了旋转的性质,解题的关键是找准旋转角.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、2
    【解析】
    设,根据正方形的性质、平行四边形的面积公式分别表示出,,,根据题意计算即可.
    【详解】
    解:设DB=x,
    则S1=x1,S1==1x1,S3= 1x×1x=4x1.
    由题意得,S1+S3=15,即x1+4x1=15,
    解得x1=3,
    所以S1=1x1=2,
    故答案为:2.
    本题考查的是正方形的性质、平行四边形的性质,掌握正方形的四条边相等、四个角都是是解题的关键.
    10、m>
    【解析】
    根据图象的增减性来确定(2m-1)的取值范围,从而求解.
    【详解】
    ∵一次函数y=(2m-1)x+1,y随x的增大而增大,
    ∴2m-1>1,
    解得,m>,
    故答案是:m>.
    本题考查了一次函数的图象与系数的关系.一次函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1.
    11、甲
    【解析】
    根据方差的定义,方差越小数据越稳定.
    【详解】
    解:因为S甲2=1.2<S乙2=3.9,方差小的为甲,所以本题中成绩比较稳定的是甲.
    故答案为甲;
    本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    12、7.1cm2
    【解析】
    已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.
    点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.
    13、26°
    【解析】
    根据可得△DBC为等腰三角形,则有∠DBC=∠C=64°,再根据平行四边形的对边互相平行,可得∠ADB=∠DBC=64°,最后再根据内角和定理来求得∠DAE的度数.
    【详解】
    解:∵,∠C=64°,
    ∴∠DBC=∠C=64°,
    又∵四边形是平行四边形,
    ∴AD∥BC,
    ∴∠ADB=∠DBC=64°,
    又∵,
    ∴∠DAE=90°−64°=26°.
    故答案为:26°.
    本题主要考查了平行四边形和等腰三角形的性质,熟练掌握是解题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、(1)ADC(SSS),AC⊥BD;(2)四边形ABCD是菱形,见解析;(3),2.
    【解析】
    (1)根据作法和三角形全等的判定方法解答,再根据到线段两端点距离相等的点在线段的垂直平分线上可得AC⊥BD;
    (2)根据四条边都相等的四边形是菱形证明;
    (3)设点B到AD的距离为h,然后根据菱形的面积等于底边×高和菱形的面积等于对角线乘积的一半列方程求解即可;再根据正方形的面积公式和菱形的面积求解.
    【详解】
    (1)由图可知,AB=AD,CB=CD,
    在△ABC和△ADC中,

    ∴△ABC≌△ADC(SSS),
    ∵AB=AD,
    ∴点A在BD的垂直平分线上,
    ∵CB=CD,
    ∴点C在BD的垂直平分线上,
    ∴AC垂直平分BD,
    ∴AC⊥BD;
    (2)四边形ABCD是菱形.
    理由如下:由(1)可得AB=AD,CB=CD,
    ∵AB=BC,
    ∴AB=BC=CD=DA,
    ∴四边形ABCD是菱形;
    (3)设点B到AD的距离为h,
    在菱形ABCD中,AC⊥BD,且AO=CO=4,BO=DO=3,
    在Rt△ADO中,AD==5,
    S菱形ABCD=AC•BD=AD•h,
    即×8×6=5h,
    解得h=,
    设拼成的正方形的边长为a,则a2=×8×6,
    解得a=2cm.
    所以,点B到AD的距离是cm,拼成的正方形的边长为2cm.
    本题考查了全等三角形的判定与性质,菱形的判定与性质,勾股定理,读懂题目信息,找出三角形全等的条件是解题的关键.
    15、(1)OA 在旋转过程中所扫过的面积为 0.5π ;(1)旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度;(3)MN 边上的高为 1(2)在旋转正方形 OABC 的过程中,p 值无变化.见解析.
    【解析】
    (1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.
    (1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.
    (3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.
    (2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.
    【详解】
    解:(1)过点M作MH⊥y轴,垂足为H,如图1,
    ∵点M在直线y=x上,
    ∴OH=MH.
    在Rt△OHM中,
    ∵tan∠MOH= =1,
    ∴∠MOH=25°.
    ∵A点第一次落在直线y=x上时停止旋转,
    ∴OA旋转了25°.
    ∵正方形OABC的边长为1,
    ∴OA=1.
    ∴OA在旋转过程中所扫过的面积为 =0.5π.∵A 点第一次落在直线 y=x 上时停止旋转,∴OA 旋转了 25 度.
    ∴OA 在旋转过程中所扫过的面积为 0.5π .
    (1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25 度.
    ∴∠BMN=∠BNM.BM=BN.
    又∵BA=BC,AM=CN.
    又∵OA=OC,∠OAM=∠OCN,
    ∴△OAM ≌△OCN.∴∠AOM=∠CON.
    ∴∠AOM= 1/1(90°-25°)=11.5 度.
    ∴旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度.
    (3)证明:过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,
    则∠AOE=25°-∠AOM,∠CON=90°-25°-∠AOM=25°-∠AOM.
    ∴∠AOE=∠CON.
    在△OAE和△OCN中,

    ∴△OAE≌△OCN(ASA).
    ∴OE=ON,AE=CN.
    在△OME和△OMN中
    ∴△OME≌△OMN(SAS).
    ∴∠OME=∠OMN.
    ∵MA⊥OA,MF⊥OF,
    ∴OF=OA=1.
    ∴在旋转过程中,△MNO的边MN上的高为定值.MN 边上的高为 1;
    (2)在旋转正方形OABC的过程中,p值不变化.
    证明:延长 BA 交 y 轴于 E 点,则∠AOE=25°-∠AOM,
    ∠CON=90°-25°-∠AOM=25°-∠AOM,
    ∴∠AOE=∠CON.
    又∵OA=OC,∠OAE=180°-90°=90°=∠OCN.
    ∴△OAE ≌△OCN.
    ∴OE=ON,AE=CN.
    又∵∠MOE=∠MON=25°,OM=OM,
    ∴△OME ≌△OMN.
    ∴MN=ME=AM+AE.∴MN=AM+CN,
    ∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=2.
    ∴在旋转正方形 OABC 的过程中,p 值无变化.
    故答案为:(1)OA 在旋转过程中所扫过的面积为 0.5π ;(1)旋转过程中,当 MN 和 AC 平行时,正方形 OABC 旋转的度数为 25°-11.5°=11.5 度;(3)MN 边上的高为 1(2)在旋转正方形 OABC 的过程中,p 值无变化.见解析.
    本题考查正方形的性质、全等三角形的判定与性质、角平分线的性质、平行线的性质、扇形的面积公式、等腰三角形的判定、特殊角的三角函数值等知识,有一定的综合性.而本题在图形旋转的过程中探究不变的量,渗透了变中有不变的辩证思想.
    16、见解析
    【解析】
    试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
    应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
    试题解析:
    探究:∵四边形ABCD、四边形CEFG均为菱形,
    ∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
    ∵∠A=∠F,
    ∴∠BCD=∠ECG.
    ∴∠BCD-∠ECD=∠ECG-∠ECD,
    即∠BCE=∠DCG.
    在△BCE和△DCG中,

    ∴△BCE≌△DCG(SAS),
    ∴BE=DG.
    应用:∵四边形ABCD为菱形,
    ∴AD∥BC,
    ∵BE=DG,
    ∴S△ABE+S△CDE=S△BEC=S△CDG=8,
    ∵AE=3ED,
    ∴S△CDE= ,
    ∴S△ECG=S△CDE+S△CDG=10
    ∴S菱形CEFG=2S△ECG=20.
    17、(1)①,;②,;(2)①,;②,.
    【解析】
    试题分析:(1)①令第一个方程中的a=2即可得到答案;
    ②把(x-1)看成一个整体,利用第一个方程的规律即可得出答案;
    (2)①等式两边减去1,把(x-1)和(a-1)分别看成是整体,利用第三个方程的规律即可得出答案;
    ②等式两边减去2,把(x-2)和(a-2)分别看成是整体,利用第二个方程和第四个方程的规律即可得出答案.
    试题解析:
    解:(1)①由第一个方程规律可得:x1=2,x2=;
    ②根据第一个方程规律可得:x-1=3或x-1=,
    ∴x1=4,x2=;
    (2)①方程两边减1得:(x-1)+=(a-1)+ ,
    ∴x-1=a-1或x-1=,
    ∴:x1=a,x2=;
    ②方程两边减2得:(x-2)+=(a-2)+ ,
    ∴∴x-2=a-2或x-2=,
    ∴:x1=a,x2=.
    点睛:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.
    18、(1)甲;(2)2.1.
    【解析】
    (1)从平均数与方差上进行分析,根据方差越大,波动越大,数据越不稳定,反之,方差越小,波动越小,数据越稳定即可求出答案;
    (2)根据方差的计算公式进行计算即可得.
    【详解】
    解:(1)从平均数看,甲、乙的平均数一样,都是8分,
    从方差看,0.4<3.2,即甲的方差比乙的方差小,甲的成绩比较稳定,因此应该选派甲去参加操作技能大赛;
    (2)乙的平均数为:(5+9+7+10+9+8)÷6=8,
    方差为:=≈2.1,
    答:乙6次测试成绩的方差为2.1.
    本题考查了方差的意义,熟练掌握方差的意义以及方差的计算公式是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、165.125千米.
    【解析】
    根据加权平均数的定义列式进行求解即可.
    【详解】
    估计被抽检电动汽车一次充电后平均里程数为:
    165.125(千米),
    故答案为165.125千米.
    本题考查了条形统计图的知识以及加权平均数,能准确分析条形统计图并掌握加权平均数的计算公式是解此题的关键.
    20、①②④⑤
    【解析】
    ①②∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=⊂FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;
    ③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=,MC=DF=﹣2,∴FC=2﹣DF=2﹣(﹣2)=4﹣,S△AFC=CF•AD≠1,所以选项③不正确;
    ④AF===,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;
    ⑤在Rt△FEC中,EG⊥FC,∴=FG•CG,cs∠FCE=,∴CG===1,∴DG=CG,∴=FG•DG,故选项⑤正确;
    本题正确的结论有4个,
    故答案为①②④⑤.
    21、1
    【解析】
    分析:首先求出直线y=2x-6与x轴、y轴的交点的坐标,然后根据三角形的面积公式得出结果.
    详解:∵当x=0时,y=0-6=-6,
    ∴图像与y轴的交点是(0,-6);
    ∵当y=0时,2x-6=0,
    ∴x=3,
    ∴图像与x轴的交点是(3,0);
    ∴S△AOB=×3×6=1.
    故答案为:1.
    点睛:本题考查了一次函数图像与坐标轴的交点问题,分别令x=0和y=0求出图像与坐标轴的交点是解答本题的关键.
    22、乙
    【解析】
    根据方差的意义即可解答.
    【详解】
    ∵S甲2=1.32>S乙2=1.26
    ∴乙更加稳定
    本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量. 在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.
    23、1
    【解析】
    ∵点P(3,2)在函数y=3x-b的图象上,
    ∴2=3×3-b,
    解得:b=1.
    故答案是:1.
    二、解答题(本大题共3个小题,共30分)
    24、﹣3<x≤1.
    【解析】
    先分别求出各不等式的解集,再求其公共解集即可.
    【详解】
    解不等式①得:x≤1,
    解不等式②得:x>﹣3,
    所以不等式组的解集为:﹣3<x≤1.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集,并将找到其公共部分是关键.
    25、补全表格见解析;画图见解析;见解析.
    【解析】
    (1)根据已知数据补全即可;
    (2)根据频数分布直方图的制作可得;
    (3)由频数分布直方图得出合理信息即可.
    【详解】
    补全表格如下:
    频数分布直方图如下:
    销售额在的饮料自动售货机最多,有7台;
    销售额在的饮料自动售货机最少,只有3台;
    销售额在和的饮料自动售货机的数量相同.
    本题考查了统计表、条形统计图的应用,关键是正确从统计表中得到正确的信息,条形统计图表示的是事物的具体数量.
    26、(1)4;(2)5;(3)600(+1).
    【解析】
    (1)如图①中,证明△EOB≌△FOC即可解决问题;
    (2)如图②中,连接BD,取AC的中点O,连接OB,OD.利用四点共圆,证明∠DBQ=∠DAC=45°,再根据垂线段最短即可解决问题.
    (3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,首先证明AB+BC+BD=(+1)BD,当BD最大时,AB+BC+BD的值最大.
    【详解】
    解:(1)如图①中,
    ∵四边形ABCD是正方形,
    ∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,
    ∵∠EOF=90°,
    ∴∠EOF=∠BOC,
    ∴∠EOB=∠FOC,
    ∴△EOB≌△FOC(SAS),
    ∴S△EOB=S△OFC,
    ∴S四边形OEBF=S△OBC=•S正方形ABCD=4,
    故答案为:4;
    (2)如图②中,连接BD,取AC的中点O,连接OB,OD.
    ∵∠ABD=∠ADC=90°,AO=OC,
    ∴OA=OC=OB=OD,
    ∴A,B,C,D四点共圆,
    ∴∠DBC=∠DAC,
    ∵DA=DC,∠ADC=90°,
    ∴∠DAC=∠DCA=45°,
    ∴∠DBQ=45°,
    根据垂线段最短可知,当QD⊥BD时,QD的值最短,DQ的最小值=BQ=5.
    (3)如图③中,将△BDC绕点D顺时针旋转90°得到△EDA,
    ∵∠ABC+∠ADC=180°,
    ∴∠BCD+∠BAD=∠EAD+BAD=180°,
    ∴B,A,E三点共线,
    ∵DE=DB,∠EDB=90°,
    ∴BE=BD,
    ∴AB+BC=AB+AE=BE=BD,
    ∴BC+BC+BD=(+1)BD,
    ∴当BD最大时,AB+BC+BD的值最大,
    ∵A,B,C,D四点共圆,
    ∴当BD为直径时,BD的值最大,
    ∵∠ADC=90°,
    ∴AC是直径,
    ∴BD=AC时,AB+BC+BD的值最大,最大值=600(+1).
    本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,四点共圆,圆周角定理,垂线段最短等知识,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,学会用转化的思想思考问题,属于中考常考题型.
    题号





    总分
    得分
    批阅人
    5次测试成绩(分)
    平均数
    方差

    8
    8
    7
    8
    9
    8
    0.4

    5
    9
    7
    10
    9
    8
    3.2
    销售金额x
    划记
    ______
    ______
    频数
    3
    5
    ______
    ______
    销售金额x
    划记
    频数
    3
    5
    7
    5
    相关试卷

    安徽省亳州蒙城县联考2023-2024学年数学九年级第一学期期末联考试题含答案: 这是一份安徽省亳州蒙城县联考2023-2024学年数学九年级第一学期期末联考试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列各式计算正确的是等内容,欢迎下载使用。

    安徽省亳州市蒙城县2023-2024学年八上数学期末检测模拟试题含答案: 这是一份安徽省亳州市蒙城县2023-2024学年八上数学期末检测模拟试题含答案,共8页。试卷主要包含了如图,有下列四种结论,点P象限,下列方程中是二元一次方程的是等内容,欢迎下载使用。

    2023-2024学年安徽省亳州市蒙城县八上数学期末调研模拟试题含答案: 这是一份2023-2024学年安徽省亳州市蒙城县八上数学期末调研模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,已知,下列说法错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map