|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年安徽合肥包河区四十八中学数学九上开学监测模拟试题【含答案】
    立即下载
    加入资料篮
    2024年安徽合肥包河区四十八中学数学九上开学监测模拟试题【含答案】01
    2024年安徽合肥包河区四十八中学数学九上开学监测模拟试题【含答案】02
    2024年安徽合肥包河区四十八中学数学九上开学监测模拟试题【含答案】03
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年安徽合肥包河区四十八中学数学九上开学监测模拟试题【含答案】

    展开
    这是一份2024年安徽合肥包河区四十八中学数学九上开学监测模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)如图所示,是半圆的直径,点从点出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )
    A.B.C.D.
    2、(4分)如图,在中,度.以的三边为边分别向外作等边三角形,,,若,的面积分别是8和3,则的面积是( )
    A.B.C.D.5
    3、(4分)如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于( )
    A.3∶4B.∶C.∶D.∶
    4、(4分)在△ABC中,若AB=8,BC=15,AC=17,则AC边上的中线BD的长为( )
    A.8B.8.5C.9D.9.5
    5、(4分)如图,当y1>y2时,x的取值范围是 ( )
    A.x>1B.x>2C.x<1D.x<2
    6、(4分)下列四个图形中,既是轴对称又是中心对称的图形是
    A.1个B.2个C.3个D.4个
    7、(4分)中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )
    A.个B.个C.个D.个
    8、(4分)下列调查中,最适合采用抽样调查的是( )
    A.对某地区现有的16名百岁以上老人睡眠时间的调查
    B.对“神舟十一号”运载火箭发射前零部件质量情况的调查
    C.对某校九年级三班学生视力情况的调查
    D.对某市场上某一品牌电脑使用寿命的调查
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为 1m,那么它的下部应设计的高度为_____.
    10、(4分)如图,点在的平分线上,,垂足为,点在上,若,则__.
    11、(4分)将函数y=的图象向上平移_____个单位后,所得图象经过点(0,1).
    12、(4分)将直线y=﹣2x﹣2向上平移5个单位后,得到的直线为_____.
    13、(4分)实数在数轴上的对应点的位置如图所示,则__________.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(﹣4,1),B(﹣1,1),C(﹣2,3).
    (1)将△ABC向右平移1个单位长度,再向下平移3个单位长度后得到△A1B1C1,请画出△A1B1C1;
    (2)将△ABC绕原点O顺时针旋转90°后得到△A2B2C2,请画出△A2B2C2;
    (3)直接写出以C1、B1、B2为顶点的三角形的形状是 .
    15、(8分)已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.
    求证:四边形DEFG是平行四边形.
    16、(8分)学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表
    训练后学生成绩统计表
    根据以上信息回答下列问题
    (1)训练后学生成绩统计表中n= ,并补充完成下表:
    (2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?
    17、(10分)如图,抛物线与直线相交于,两点,且抛物线经过点
    (1)求抛物线的解析式.
    (2)点是抛物线上的一个动点(不与点点重合),过点作直线轴于点,交直线于点.当时,求点坐标;
    (3)如图所示,设抛物线与轴交于点,在抛物线的第一象限内,是否存在一点,使得四边形的面积最大?若存在,请求出点的坐标;若不存在,说明理由.
    18、(10分)已知在菱形ABCD中,对角线AC、BD交于点O,AB=2AO;(1)如图1,求∠BAC的度数;(2)如图2,P为菱形ABCD外一点,连接AP、BP、CP,若∠CPB=120°,求证:CP+BP=AP;(3)如图3,M为菱形ABCD外一点,连接AM、CM、DM,若∠AMD=150°,
    CM=2,DM=2,求四边形ACDM的面积。
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知直线y=kx+b和直线y=-3x平行,且过点(0,-3),则此直线与x轴的交点坐标为________.
    20、(4分)已知关于x的不等式3x - m+1>0的最小整数解为2,则实数m的取值范围是___________.
    21、(4分)如图,在菱形中,边长为.顺次连结菱形各边中点,可得四边形顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续....四边形的周长是____,四边形的周长是____.
    22、(4分)点A(a,﹣5)和(3,b)关于x轴对称,则ab=_____.
    23、(4分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图5中挖去三角形的个数为______
    二、解答题(本大题共3个小题,共30分)
    24、(8分)我市进行运河带绿化,计划种植银杏树苗,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:
    甲:购买树苗数量不超过500棵时,销售单价为800元棵;超过500棵的部分,销售单价为700元棵.
    乙:购买树苗数量不超过1000棵时,销售单价为800元棵;超过1000棵的部分,销售单价为600元棵.
    设购买银杏树苗x棵,到两家购买所需费用分别为元、元
    (1)该景区需要购买800棵银杏树苗,若都在甲家购买所要费用为______元,若都在乙家购买所需费用为______元;
    (2)当时,分别求出、与x之间的函数关系式;
    (3)如果你是该景区的负责人,购买树苗时有什么方案,为什么?
    25、(10分)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,连接BM.
    (1)菱形ABCO的边长
    (2)求直线AC的解析式;
    (3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
    ①当0<t<时,求S与t之间的函数关系式;
    ②在点P运动过程中,当S=3,请直接写出t的值.
    26、(12分)如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为1.依此即可求解.
    【详解】
    解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为1.
    故选:D.
    此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x之间的大小变化关系,从而正确选择对应的图象.
    2、D
    【解析】
    先设AC=b,BC=a,AB=c,根据勾股定理有c2+b2=a2,再根据等式性质可得c2+b2=a2,再根据等边三角形的性质以及特殊三角函数值,易求得S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,从而可得S1+S2=S3,易求S1.
    【详解】
    解:如图,设等边三角形△A'BC,△AB'C,△ABC'的面积分别是S3,S2,S1,
    设AC=b,BC=a,AB=c,
    ∵△ABC是直角三角形,且∠BAC=90度,
    ∴c2+b2=a2,
    ∴c2+b2=a2,
    又∵S3=×sin60°a•a=a2,同理可求S2=b2,S1=c2,
    ∴S1+S2=S3,
    ∵S3=8,S2=3,
    ∴S1=S3−S2=8−3=5,
    故选:D.
    本题考查了勾股定理,等边三角形的性质、特殊三角函数值的应用.解题关键是根据等边三角形的性质求出每一个三角形的面积.
    3、B
    【解析】
    连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据三角形的面积是平行四边形面积的一半,可推出AF×DP=CE×DQ,根据线段比例关系设出AB=3a,BC=2a,然后在Rt△AFN和Rt△CEM中,利用勾股定理计算出AF、CE,再代入AF×DP=CE×DQ可得结果.
    【详解】
    连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
    ∵根据三角形的面积和平行四边形的面积得:
    ,即.
    ∴AF×DP=CE×DQ,
    ∵四边形ABCD是平行四边形,∴AD∥BC
    ∵∠DAB=60°,∴∠CBN=∠DAB=60°.∴∠BFN=∠MCB=30°
    ∵AB:BC=3:2,∴设AB=3a,BC=2a
    ∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a
    由勾股定理得:FN=a,CM=a

    ∴.∴,故选B.
    本题考查平行四边形中勾股定理的运用,关键是作出正确的辅助线,构造直角三角形,利用勾股定理计算出AF、CE.
    4、B
    【解析】
    首先判定△ABC是直角三角形,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.
    【详解】
    ∵82+152=289=172,
    ∴AB2+BC2=AC2,
    ∴△ABC是直角三角形,∠ABC=90°,
    ∵BD是AC边上的中线,
    ∴BD=AC=8.5,
    故选B.
    此题主要考查了勾股定理逆定理,以及直角三角形的性质,关键是正确判定△ABC的形状.
    5、C
    【解析】
    分析:根据图像即可解答.
    详解:观察图像可知:当x<1时,y1=kx+b在y2=mx+n的上方,即y1>y2..
    故选C.
    点睛:本题考查一次函数的图像问题,主要是通过观察当x在哪个范围内时对应的函数值较大.
    6、B
    【解析】
    根据轴对称图形与中心对称图形的概念进行判断即可.
    【详解】
    既是轴对称又是中心对称的图形是第一个和第三个;
    是轴对称不是中心对称的图形是第二个和第四个;
    故选.
    本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、C
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    120亿个用科学记数法可表示为:个.
    故选C.
    此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.
    8、D
    【解析】
    试题分析:A.人数不多,容易调查,适合普查.
    B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;
    C.班内的同学人数不多,很容易调查,因而采用普查合适;
    D.数量较大,适合抽样调查;
    故选D.
    考点:全面调查与抽样调查.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    设雕像的下部高为x m,则上部长为(1-x)m,然后根据题意列出方程求解即可.
    【详解】
    解:设雕像的下部高为x m,则题意得:,
    整理得:,
    解得: 或 (舍去);
    ∴它的下部应设计的高度为.
    故答案为:.
    本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.
    10、1.
    【解析】
    作EG⊥AO于点G,根据角平分线的性质求得EG的长,然后利用直角三角形中30°的直角边等于斜边的一半求解即可.
    【详解】
    解:如图,作EG⊥AO于点G,
    ∵点E在∠BOA的平分线上,EC⊥OB,EC=3,
    ∴EG=EC=3,
    ∵∠AFE=30°,
    ∴EF=2EG=2×3=1,
    故答案为:1.
    本题考查了角平分线的性质,解题的关键是根据角平分线的性质求得EG的长,难度不大.
    11、3
    【解析】
    根据一次函数平移“上加下减”,即可求出.
    【详解】
    解:函数y=的图象与y轴的交点坐标是(0,-2),
    图象需要向上平移1-(-2)=3个单位才能经过点(0,1).
    故答案为:3.
    本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.
    12、y=﹣2x+3
    【解析】
    一次函数图像,即直线平移的原则是:上加下减,左加右减,据此即可求解.
    【详解】
    将直线y=﹣2x﹣2向上平移5个单位,得到直线y=﹣2x﹣2+5,即y=﹣2x+3;
    故答案为:y=﹣2x+3;
    该题主要考查了一次函数图像,即直线平移的方法:上加下减,左加右减,准确掌握平移的原则即可解题.
    13、
    【解析】
    首先根据数轴的含义,得出,然后化简所求式子,即可得解.
    【详解】
    根据数轴,可得

    原式=
    故答案为.
    此题主要考查绝对值的性质,熟练掌握,即可解题.
    三、解答题(本大题共5个小题,共48分)
    14、(1)详见解析,点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0);(2)详见解析;(3)等腰直角三角形.
    【解析】
    (1)利用点平移的坐标特征写出点A1,B1,C1的坐标,然后描点即可;
    (2)利用网格特点和旋转的性质画出点A、B、C的对应点A2、B2、C2得到△A2B2C2;
    (3)利用勾股定理的逆定理进行判断.
    【详解】
    解:(1)如图,将△ABC向右平移1个单位长度,再向下平移3个单位长度,则△A1B1C1即为所作;点A1,B1,C1的坐标分别为(﹣3,﹣2),(0,﹣2),(﹣1,0)
    (2)如图,每个点都绕原点顺时针旋转90°,则△A2B2C2即为所作.
    (3)∵C1B12=5,C1B22=5,B1B22=10,
    ∴C1B12+C1B22=B1B22,C1B1=C1B2,
    ∴以C1、B1、B2为顶点的三角形的形状是等腰直角三角形.
    故答案为等腰直角三角形.
    此题考查平移和旋转的知识点,结合平移和旋转的规则即可作图求解,第三问考查勾股定理的应用.
    15、证明见解析.
    【解析】
    利用三角形中线的性质、中位线的定义和性质证得四边形EFGD的对边DE∥GF,且DE=GF=BC;然后由平行四边形的判定--对边平行且相等的四边形是平行四边形,证得结论.
    【详解】
    证明:如图,连接ED、DG、GF、FE.
    ∵BD、CE是△ABC的两条中线,
    ∴点D、E分别是边AC、AB的中点,
    ∴DE∥CB,DE=CB;
    又∵F、G分别是OB、OC的中点,
    ∴GF∥CB,GF=CB;
    ∴DE∥GF,且DE=GF,
    ∴四边形DEFG是平行四边形(对边平行且相等的四边形是平行四边形).
    考查了三角形中位线定理、平行四边形的判定.平行四边形的判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;一组对边平行,一组对角相等的四边形是平行四边形.
    16、(1)3;7.5;8.3;8;(2)估计该校九年级学生训练后比训练前达到优秀的人数增加了125人
    【解析】
    (1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;
    (2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;
    【详解】
    (1)n=20-1-3-8-5=3;
    强化训练前的中位数为=7.5;
    强化训练后的平均分为(1×6+3×7+8×8+9×5+10×3)=8.3;
    强化训练后的众数为8,
    故答案为3;7.5;8.3;8;
    (2)500×(-)=125,
    所以估计该校九年级学生训练后比训练前达到优秀的人数增加了125人.
    本题考查读条形统计图图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
    17、(1);(2)点坐标为(2,9)或(6,-7);(3)存在点Q()使得四边形OFQC的面积最大,见解析.
    【解析】
    (1)先由点在直线上求出点的坐标,再利用待定系数法求解可得;
    (2)可设出点坐标,则可表示出、的坐标,从而可表示出和的长,由条件可知到关于点坐标的方程,则可求得点坐标;
    (3)作轴于点,设,,知,,,根据四边形的面积建立关于的函数,再利用二次函数的性质求解可得.
    【详解】
    解:(1)点在直线上,
    ,,
    把、、三点坐标代入抛物线解析式可得,解得,
    抛物线解析式为;
    (2)设,则,,
    则,,


    当时,解得或,但当时,与重合不合题意,舍去,

    当时,解得或,但当时,与重合不合题意,舍去,

    综上可知点坐标为或;
    (3)存在这样的点,使得四边形的面积最大.
    如图,过点作轴于点,
    设,,
    则,,,
    四边形的面积

    当时,四边形的面积取得最大值,最大值为,此时点的坐标为,.
    本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及利用割补法列出四边形面积的函数关系式.
    18、(1)∠BAC=60°;(2)见解析;(3).
    【解析】
    (1)如图1中,证明△ABC是等边三角形即可解决问题.
    (2)在PA上截取PH,使得PH=PC,连接CH.证明△PCB≌△HCA(SAS)即可;
    (3)如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.证明A,N,D,M四点共圆,外接圆的圆心是点C,推出AD=CM= ,解直角三角形求出AH即可解决问题.
    【详解】
    解:(1)如图1中,
    ∵四边形ABCD是菱形,
    ∴AC⊥BD,∠ABD=∠CBD,
    ∴∠AOB=90°,
    ∵AB=2OA,
    ∴∠ABO=30°,
    ∴∠ABC=60°,
    ∵BA=BC,
    ∴△ABC是等边三角形,
    ∴∠BAC=60°;
    (2)证明:如图2中,
    在PA上截取PH,使得PH=PC,连接CH.
    ∵∠BPC=120°,∠BAC=60°,
    ∴∠BPC+∠BAC=180°,
    ∴A,B,P,C四点共圆,
    ∴∠APC=∠ABC=60°,
    ∵PH=PC,
    ∴△PCH是等边三角形,
    ∴PC=CH,∠PCH=∠ACB=60°,
    ∴∠PCB=∠HCA,
    ∵CB=CA,CP=CH,
    ∴△PCB≌△HCA(SAS),
    ∴PB=AH,
    ∴PA=PH+AH=PC+PB;
    (3)解:如图3中,作AH⊥DM交DM的延长线于H,延长AC到N,使得CN=AC,连接DN.
    ∵CA=CD=CN,
    ∴∠ADN=90°,
    ∵CD=CN,
    ∴∠N=∠CDN,
    ∵∠ACD=60°=∠N+∠CDN,
    ∴∠N=30°,
    ∵∠AMD=150°,
    ∴∠N+∠AMD=180°,
    ∴A,N,D,M四点共圆,外接圆的圆心是点C,
    ∴CA=CD=AD=CM=,
    在Rt△AHM中,∵∠AMH=30°,
    ∴MH=AH,设AH=x,则HM=x,
    在Rt△ADH中,∵AD2=AH2+DH2,
    ∴28=x2+(x+2)2,
    解得x=或-2(舍弃),
    ∴AH=,
    ∴S四边形ACDM=S△ACD+S△ADM=×+×2×=.
    本题属于四边形综合题,考查了菱形的性质,等边三角形的判定和性质,解直角三角形,四点共圆,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、 (−1,0).
    【解析】
    先根据直线平行的问题得到k=-3,再把(0,-3)代入y=-3x+b求出b,从而得到直线解析式,然后计算函数值为0所对应的自变量的值即可得到直线与x轴的交点坐标.
    【详解】
    ∵直线y=kx+b和直线y=−3x平行,
    ∴k=−3,
    把(0,−3)代入y=−3x+b得b=−3,
    ∴直线解析式为y=−3x−3,
    当y=0时,−3x−3=0,解得x=−1,
    ∴直线y=−3x−3与x轴的交点坐标为(−1,0).
    故答案为(−1,0).
    此题考查两条直线相交或平行问题,把已知点代入解析式是解题关键
    20、
    【解析】
    先用含m的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m的取值范围.
    【详解】
    ∵3x - m+1>0,
    ∴3x> m-1,
    ∴x>,
    ∵不等式3x - m+1>0的最小整数解为2,
    ∴1≤<3,
    解之得
    .
    故答案为:.
    本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m的不等式是解答本题的关键.
    21、, .
    【解析】
    根据菱形的性质,三角形中位线的性质以及勾股定理求出四边形各边长,得出规律求出即可.
    【详解】
    解:∵菱形ABCD中,边长为10,∠A=60°,顺次连结菱形ABCD各边中点,
    ∴是等边三角形,四边形是矩形,四边形是菱形,
    ∴,,,
    ∴四边形的周长是:,
    同理可得出:,
    , …
    所以:,
    四边形的周长,
    ∴四边形的周长是:,
    故答案为:20; .
    此题主要考查了三角形的中位线的性质,菱形的性质以及矩形的性质和中点四边形的性质等知识,根据已知得出边长变化规律是解题关键.
    22、1.
    【解析】
    根据关于x轴对称的点的横坐标相同,纵坐标互为相反数可得a、b的值,继而可求得答案.
    【详解】
    ∵点A(a,-5)和点B(3,b)关于x轴对称,
    ∴a=3,b=5,
    ∴ab=1,
    故答案为:1.
    本题考查了关于x轴对称的点的坐标特征,熟练掌握是解题的关键.
    23、1
    【解析】
    根据题意找出图形的变化规律,根据规律计算即可.
    【详解】
    解:图1挖去中间的1个小三角形,
    图2挖去中间的(1+3)个小三角形,
    图3挖去中间的(1+3+32)个小三角形,

    则图5挖去中间的(1+3+32+33+34)个小三角形,即图5挖去中间的1个小三角形,
    故答案为1.
    本题考查的是图形的变化,掌握图形的变化规律是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)610000元,640000元;(2),;(3)见解析.
    【解析】
    (1)由单价数量及可以得出购买树苗需要的费用;
    (2)根据当,由单价数量就可以得出购买树苗需要的费用表示出、与之间的函数关系式;
    (3)分类讨论,当,时,时,表示出、的关系式,就可以求出结论.
    【详解】
    解:由题意,得.
    元,
    元;
    故答案为;640000
    当时,,,x为正整数,
    当时,到两家购买所需费用一样;
    时,甲家有优惠而乙家无优惠,所以到甲家购买合算;

    当时,,解得,当时,到两家购买所需费用一样;
    当y甲乙时,,
    当时,到甲家购买合算;
    当y甲乙时,,
    当时,到乙家购买合算.
    综上所述,当时或时,到两家购买所需费用一样;当时,到甲家购买合算;当时,到乙家购买合算.
    本题考查了运用一次函数的解析式解实际问题的运用,方案设计的运用,单价×数量=总价,解答时求出一次函数的解析式是关键.
    25、(1)5;(2)直线AC的解析式y=﹣x+;(3)见解析.
    【解析】
    (1)Rt△AOH中利用勾股定理即可求得菱形的边长;
    (2)根据(1)即可求的OC的长,则C的坐标即可求得,利用待定系数法即可求得直线AC的解析式;
    (3)根据S△ABC=S△AMB+S△BMC求得M到直线BC的距离为h,然后分成P在AM上和在MC上两种情况讨论,利用三角形的面积公式求解.
    【详解】
    (1)Rt△AOH中,

    所以菱形边长为5;
    故答案为5;
    (2)∵四边形ABCO是菱形,
    ∴OC=OA=AB=5,即C(5,0).
    设直线AC的解析式y=kx+b,函数图象过点A、C,得
    ,解得,
    直线AC的解析式;
    (3)设M到直线BC的距离为h,
    当x=0时,y=,即M(0,),,
    由S△ABC=S△AMB+SBMC=AB•OH=AB•HM+BC•h,
    ×5×4=×5×+×5h,解得h=,
    ①当0<t<时,BP=BA﹣AP=5﹣2t,HM=OH﹣OM=,
    S=BP•HM=×(5﹣2t)=﹣t+;
    ②当2.5<t≤5时,BP=2t﹣5,h=,
    S=BP•h=×(2t﹣5)=t﹣,
    把S=3代入①中的函数解析式得,3=﹣t+,
    解得:t=,
    把S=3代入②的解析式得,3=t﹣,
    解得:t=.
    ∴t=或.
    本题考查了待定系数法求一次函数的解析式以及菱形的性质,根据三角形的面积关系求得M到直线BC的距离h是关键.
    26、(1)见解析;(2).
    【解析】
    (1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得到两条线段相等,再由对顶角相等,利用ASA可得出三角形ABE与三角形FCE全等;进而得出AB=FC,即可得出四边形ABFC是平行四边形,再由直角三角形的判定方法得出△BFC是直角三角形,即可得出平行四边形ABFC是矩形.
    (2)由等边三角形的性质得出∠AFC=60°,AF=DF=4,得出CF=CD=2,由矩形的性质得出∠ACF=90°,得出AC=CF=2,即可得出四边形ABFC的面积=AC•CF=4.
    【详解】
    解:(1)∵四边形ABCD为平行四边形,
    ∴AB∥DC,
    ∴∠ABE=∠ECF,
    又∵E为BC的中点
    ∴BE=CE,
    在△ABE和△FCE中,,
    ∴△ABE≌△FCE(ASA);
    ∴AE=EF,AB=CF,
    ∴四边形ABFC是平行四边形,
    ∵∠AEC=2∠ABC=∠ABC+∠BAE,
    ∴∠ABC=BAE,
    ∴AE=BE
    ∵AE=EF,BE=CE,
    ∴AF=BC,
    ∴平行四边形ABFC是矩形;
    (2)∵△AFD是等边三角形,
    ∴∠AFC=60°,AF=DF=4,
    ∴CF=CD=2,
    ∵四边形ABFC是矩形,
    ∴∠ACF=90°,
    ∴AC=CF=2,
    ∴四边形ABFC的面积=AC•CF= .
    此题主要考查了矩形的判定以及全等三角形的判定与性质等知识,根据已知得出AB=CF是解题关键.
    题号





    总分
    得分
    批阅人
    成绩/分数
    6分
    7分
    8分
    9分
    10分
    人数/人
    1
    3
    8
    5
    n
    平均分
    中位数
    众数
    训练前
    7.5
    8
    训练后
    8
    相关试卷

    2024年安徽省合肥市庐江县志成学校九上数学开学监测模拟试题【含答案】: 这是一份2024年安徽省合肥市庐江县志成学校九上数学开学监测模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省合肥市包河区九年级数学第一学期开学综合测试模拟试题【含答案】: 这是一份2024年安徽省合肥市包河区九年级数学第一学期开学综合测试模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年安徽省合肥168中学九上数学开学监测模拟试题【含答案】: 这是一份2024年安徽省合肥168中学九上数学开学监测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map