


2024-2025学年安徽省临泉数学九年级第一学期开学调研模拟试题【含答案】
展开
这是一份2024-2025学年安徽省临泉数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)在平面直角坐标系中,一次函数与的图像互相平行,如果这两个函数的部分自变量和对应的函数值如下表所示:
那么的值是( )
A.B.C.D.
2、(4分)一个多边形的内角和比它的外角和的3倍少180°,则这个多边形的边数为( )
A.5B.6C.7D.8
3、(4分)如图,正方形纸片ABCD的边长为4 cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是( )
\
A.2 cmB.4 cmC. cmD.1 cm
4、(4分)如图,在同一平面直角坐标系中,函数与函数的图象大致是( )
A.B.
C.D.
5、(4分)如图,与的形状相同,大小不同,是由的各顶点变化得到的,则各顶点变化情况是( )
A.横坐标和纵坐标都乘以2B.横坐标和纵坐标都加2
C.横坐标和纵坐标都除以2D.横坐标和纵坐标都减2
6、(4分)小华的爷爷每天坚持体育锻炼,某天他慢跑从家到中山公园,打了一会儿太极拳后坐公交车回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是( ).
A.B.C.D.
7、(4分)如图,一块等腰直角的三角板,在水平桌面上绕点按顺时针方向旋转到的位置,使三点共线,那么旋转角度的大小为( )
A.B.C.D.
8、(4分)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是( )
A.cmB.cmC.cmD.5cm
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)若a,b都是实数,b=+﹣2,则ab的值为_____.
10、(4分)如图,直线分别与轴、轴交于点,点是反比例函数的图象上位于直线下方的点,过点分别作轴、轴的垂线,垂足分别为点,交直线于点,若,则的值为__________.
11、(4分)如图,“今有直角三角形,勾(短直角边)长为5,股(长直角边)长为12,河该直角三角形能容纳的如图所示的正方形边长是多少?”,该问题的答案是______.
12、(4分)如果一次函数y=kx+2的函数值y随着x的值增大而减小,那么k的取值范围是_____.
13、(4分)函数y=中,自变量x的取值范围是______.
三、解答题(本大题共5个小题,共48分)
14、(12分)在社会主义新农村建设中,衢州某乡镇决定对A、B两村之间的公路进行改造,并有甲工程队从A村向B村方向修筑,乙工程队从B村向A村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数图象,请根据图象所提供的信息解答下列问题:
(1)乙工程队每天修公路多少米?
(2)分别求甲、乙工程队修公路的长度y(米)与施工时间x(天)之间的函数关系式.
(3)若该项工程由甲、乙两工程队一直合作施工,需几天完成?
15、(8分)先化简,再求值: ,其中.
16、(8分)(1)解方程:x2+3x-4=0 (2) 计算:
17、(10分)已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.
求证:四边形AGCH是平行四边形.
18、(10分)如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,
(1)若,求的长;
(2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;
(3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)在平面直角坐标系中,已知一次函数y=x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1_____y2(填“>”,“<”或“=”).
20、(4分)正n边形的一个外角的度数为60°,则n的值为 .
21、(4分)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
22、(4分)函数的自变量的取值范围是 .
23、(4分)某商场品牌手机经过5、6月份连续两次降价,每部售价由5000元降到4050元,设平均每次降价的百分率为x,根据题意可列方程:_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在▱ABCD中,点E、F在BD上,且BF=DE.
(1)写出图中所有你认为全等的三角形;
(2)延长AE交BC的延长线于G,延长CF交DA的延长线于H(请补全图形),证明四边形AGCH是平行四边形.
25、(10分)已知一次函数的图象经过(2,5)和(﹣1,﹣1)两点.
(1)求这个一次函数的解析式;
(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时,y如何变化?
26、(12分)为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.
(1)补充完成下面的成绩统计分析表:
(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是 组的学生;(填“甲”或“乙”)
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、A
【解析】
由一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,得出k2=k2,设k2=k2=a,将(m,-2)、(0,0)代入y2=ax+b2,得到am=-2;将(m,2)、(0,n)、(2,7)代入y2=ax+b2,解方程组即可求出m的值.
【详解】
解:∵一次函数y2=k2x+b2与y2=k2x+b2的图象互相平行,
∴k2=k2,
设k2=k2=a,则y2=ax+b2,y2=ax+b2.
将(m,-2)、(0,0)代入y2=ax+b2,得am=-2①;
将(m,2)、(0,n)、(2,7)代入y2=ax+b2,
得am+n=2②,2a+n=7③,
①代入②,得n=3,
把n=3代入③,得a=2,
把a=2代入①,得m=-2.
故选:A.
本题考查了两条直线的平行问题:若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.即若直线y2=k2x+b2与直线y2=k2x+b2平行,那么k2=k2.也考查了一次函数图象上点的坐标特征.难度适中.
2、C
【解析】
解答本题的关键是记住多边形内角和公式为(n-2)×180°,任何多边形的外角和是360度.外角和与多边形的边数无关.
【详解】
多边形的内角和可以表示成(n-2)•180°,外角和是固定的360°,从而可根据内角和比他的外角和的3倍少180°列方程求解.
设所求n边形边数为n,
则(n-2)•180°=360°×3-180°,
解得n=7,
故选C.
本题主要考查了多边形的内角和与外角和,解答本题的关键是记住多边形内角和公式为(n-2)×180°.
3、A
【解析】
如图,取AB,CD的中点K,G,连接KG,BD交于点O,由题意知,点Q运动的路线是线段OG,因为DO=OB,所以DG=GC,所以OG=BC=×4=2,所以点Q移动路线的最大值是2,故选A.
4、A
【解析】
分情况讨论:和时,根据图像的性质,即可判定.
【详解】
当时,函数的图像位于第一、三象限,函数的图像第一、三、四象限;
当时,函数的图像位于第二、四象限,函数的图像第二、三、四象限;
故答案为A.
此题主要考查一次函数和反比例函数的性质,熟练掌握,即可解题.
5、A
【解析】
根据题意得:△OAB∽△OAB,然后由相似三角形的对应边成比例,求得答案.
【详解】
根据题意得:△O AB∽△OAB,
∵O(0,0),A(2,1),B(1,3),B点的坐标为(2,6),A(4,2)
∴横坐标和纵坐标都乘以2.
故选A.
此题考查坐标与图形性质,相似三角形的性质,解题关键在于利用相似三角形的对应边成比例
6、C
【解析】
根据在每段中,离家的距离随时间的变化情况即可进行判断.
【详解】
图象应分三个阶段,第一阶段:慢步到离家较远的绿岛公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿太极拳,这一阶段离家的距离不随时间的变化而改变。故D错误;第三阶段:搭公交车回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.
故选:C.
本题考查函数图象,解题的关键是由题意将图象分为三个阶段进行求解.
7、D
【解析】
根据三点共线可得,再根据等腰直角三角板的性质得,即可求出旋转角度的大小.
【详解】
∵三点共线
∴
∵这是一块等腰直角的三角板
∴
∴
故旋转角度的大小为135°
故答案为:D.
本题考查了三角板的旋转问题,掌握等腰直角三角板的性质、旋转的性质是解题的关键.
8、B
【解析】
如图所示:
∵菱形的周长为20cm,
∴菱形的边长为5cm,
∵两邻角之比为1:2,
∴较小角为60°,
∴∠ABO=30°,AB=5cm,
∵最长边为BD,BO=AB⋅cs∠ABO=5×= (cm),
∴BD=2BO= (cm).
故选B.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1
【解析】
直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.
【详解】
解:∵b=+﹣2,
∴
∴1-2a=0,
解得:a=,则b=-2,
故ab=()-2=1.
故答案为1.
此题主要考查了二次根式有意义的条件,以及负指数幂的性质,正确得出a的值是解题关键.
10、-3
【解析】
首先设PN=x,PM=y,由已知条件得出EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5),通过等量转换,列出关系式,求出,又因为反比例函数在第二象限,进而得解.
【详解】
过点F作FF′⊥OA与F′,过点E作EE′⊥OB与E′,如图所示,
设PN=x,PM=y,
由已知条件,得
EE′=PN=x,FF′=PM=y,A(-5,0),B(0,5)
∴OA=OB=5
∴∠OAB=∠OBA=45°
∴FF′=AF′=y,EE′=BE′=x,
∴AF=,BE=
又∵
∴
∴
又∵反比例函数在第二象限,
∴.
此题主要考查一次函数和反比例函数的综合应用,熟练掌握,即可解题.
11、
【解析】
根据锐角三角函数的定义以及正方形的性质即可求出答案.
【详解】
解:设正方形的边长为x,
∴CE=ED=x,
∴AE=AC-CE=12-x,
在Rt△ABC中,
,
在Rt△ADE中,
,
∴,
∴解得:x=,
故答案为:.
本题考查三角形的综合问题,解题的关键是熟练运用锐角三角函数的定义以及正方形的性质,本题属于中等题型.
12、k<1.
【解析】
根据一次函数的性质解答即可.
【详解】
∵一次函数y=kx+2,函数值y随x的值增大而减小,
∴k<1.
故答案为:k<1.
本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠1),当k>1时,y随x的增大而增大;当k
相关试卷
这是一份2024-2025学年湖南省衡阳市九年级数学第一学期开学调研模拟试题【含答案】,共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖北省天门市六校数学九年级第一学期开学调研模拟试题【含答案】,共18页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年福建省平和县九年级数学第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。