2024-2025学年湖南省长沙市天心区部分学校九上数学开学教学质量检测模拟试题【含答案】
展开
这是一份2024-2025学年湖南省长沙市天心区部分学校九上数学开学教学质量检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)如图,的坐标为,,若将线段平移至,则的值为( )
A.5B.4C.3D.2
2、(4分)下列命题是真命题的是( )
A.平行四边形的对角线相等
B.经过旋转,对应线段平行且相等
C.两组对角分别相等的四边形是平行四边形
D.两边相等的两个直角三角形全等
3、(4分)若分式的值为0,则的值是( )
A.B.C.0D.3
4、(4分)下列代数式变形正确的是( )
A.B.
C.D.
5、(4分)如图,在正方形中,点,分别在,上,,与相交于点.下列结论:①垂直平分;②;③当时,为等边三角形;④当时,.其中正确的结论是( )
A.①③B.②④C.①③④D.②③④
6、(4分)在下列各式中,是分式的有( )
A.2个B.3个C.4个D.5个
7、(4分)如图,直线过点和点,则方程的解是( )
A.B.C.D.
8、(4分)已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是( )
A.经过2小时两人相遇
B.若乙行驶的路程是甲的2倍,则t=3
C.当乙到达终点时,甲离终点还有60千米
D.若两人相距90千米,则t=0.5或t=4.5
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)要用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”,首先应假设_____.
10、(4分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为,则△CEF的周长为______.
11、(4分)已知,,则__________.
12、(4分)数据15、19、15、18、21的中位数为_____.
13、(4分)甲、乙两车从A城出发前往B城.在整个行程中,汽车离开A城的距离与时刻的对应关系如图所示,则当乙车到达B城时,甲车离B城的距离为________km.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,在中,于点E点,延长BC至F点使,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若,,,求AE的长.
15、(8分)解不等式组并把解集在数轴上表示出来
16、(8分)已知:如图,在△ABC中,AB=AC,点D是BC的中点,作∠EAB=∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连结CF.
求证:BE=CF.
17、(10分)如图,四边形OABC为矩形,点B坐标为(4,2),A,C分别在x轴,y轴上,点F在第一象限内,OF的长度不变,且反比例函数经过点F.
(1)如图1,当F在直线y = x上时,函数图象过点B,求线段OF的长.
(2)如图2,若OF从(1)中位置绕点O逆时针旋转,反比例函数图象与BC,AB相交,交点分别为D,E,连结OD,DE,OE.
①求证:CD=2AE.
②若AE+CD=DE,求k.
③设点F的坐标为(a,b),当△ODE为等腰三角形时,求(a+b)2的值.
18、(10分)我们给出如下定义:把对角线互相垂直的四边形叫做“对角线垂直四边形”.
如图,在四边形中,,四边形就是“对角线垂直四边形”.
(1)下列四边形,一定是“对角线垂直四边形”的是_________.
①平行四边形 ②矩形 ③菱形 ④正方形
(2)如图,在“对角线垂直四边形”中,点、、、分别是边、、、的中点,求证:四边形是矩形.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)如图,将沿方向平移得到,如果四边形的周长是,则的周长是____.
20、(4分)在菱形中,,,则菱形的周长是_______.
21、(4分)若代数式在实数范围内有意义,则x的取值范围是_______.
22、(4分)因式分解的结果是____.
23、(4分)在△ABC中,AB=8,BC=2 ,AC=6,D是AB的中点,则CD=_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)某城市居民用水实行阶梯收费,每户每月用水量如果未超过10吨,按每吨3元收费.如果超过10吨,未超过的部分每吨仍按3元收费,超过的部分按每吨5元收费.设某户每月用水量为x吨,应收水费为y元.
(1)分别写出每月用水量未超过10吨和超过10吨,y与x之间的函数关系式;
(2)若该城市某户5月份水费70元,该户5月份用水多少吨?
25、(10分)(12分)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
(1)求今年6月份A型车每辆销售价多少元?(用列方程的方法解答)
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A、B两种型号车的进货和销售价格如下表:
26、(12分)计算(结果可保留根号):
(1) (2)
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.
【详解】
解:由B点平移前后的纵坐标分别为1、1,可得B点向上平移了1个单位,
由A点平移前后的横坐标分别是为1、3,可得A点向右平移了1个单位,
由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,
所以点A、B均按此规律平移,
由此可得a=0+1=1,b=0+1=1,
故a+b=1.
故选D.
本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.
2、C
【解析】
命题的真假,用证明的方法去判断,或者找到反例即可,
【详解】
A项平行四边形的对角线相等,这个不一定成立,反例只要不是正方形的菱形的对角线均不相等.
B项经过旋转,对应线段平行且相等,这个不一定成立,反例旋转九十度,肯定不会平行,C项两组对角分别相等的四边形是平行四边形,这个是成立的,因为对角相等,那么可以得到同位角互补,同位角互补可以得到两组对边平行.
D项两边相等的两个直角三角形全等,这个没有加对应的这几个字眼,那么就可以找到反例,一个直角三角形的两个直角边与另一个直角三角形的一直角边和斜边相等,那么这两个直角肯定不全等,所以选择C
本题主要考查基本定义和定理,比如四边形的基本性质,线段平行的关系,直角三角形全等的条件,把握这些定义和定理就没有问题了
3、D
【解析】
根据分式为零的条件,即可完成解答.
【详解】
解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;
故答案为D.
本题考查了分式为0的条件,即分子为零,分母不为0.
4、D
【解析】
利用分式的基本性质对四个选项一一进行恒等变形,即可得出正确答案.
【详解】
解:A.,故本选项变形错误;
B. ,故本选项变形错误;
C.,故本选项变形错误;
D.,故本选项变形正确,
故选D.
本题考查了分式的基本性质.熟练应用分式的基本性质对分式进行约分和通分是解题的关键.
5、A
【解析】
①通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,
②设BC=x,CE=y,由勾股定理就可以得出EF与x、y的关系,表示出BE与EF,即可判断BE+DF与EF关系不确定;
③当∠DAF=15°时,可计算出∠EAF=60°,即可判断△EAF为等边三角形,
④当∠EAF=60°时,可证明△AEF是等边三角形,从而可得∠AEF=60°,而△CEF是等腰直角三角形,得∠CEF=45°,从而可求出∠AEB=75°,进而可得结论.
【详解】
解:①四边形ABCD是正方形,
∴AB═AD,∠B=∠D=90°.
在Rt△ABE和Rt△ADF中,
,
∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF
∵BC=CD,
∴BC-BE=CD-DF,即CE=CF,
∵AE=AF,
∴AC垂直平分EF.(故①正确).
②设BC=a,CE=y,
∴BE+DF=2(a-y)
EF=y,
∴BE+DF与EF关系不确定,只有当y=(2−)a时成立,(故②错误).
③当∠DAF=15°时,
∵Rt△ABE≌Rt△ADF,
∴∠DAF=∠BAE=15°,
∴∠EAF=90°-2×15°=60°,
又∵AE=AF
∴△AEF为等边三角形.(故③正确).
④当∠EAF=60°时,由①知AE=AF,
∴△AEF是等边三角形,
∴∠AEF=60°,
又△CEF为等腰直角三角形,
∴∠CEF=45°
∴∠AEB=180°-∠AEF-∠CEF=75°,
∴∠AEB≠∠AEF,故④错误.
综上所述,正确的有①③,
故选:A.
本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.
6、B
【解析】
依据分式的定义即可判断.
【详解】
(x+3)÷(x-1)=,
,(x+3)÷(x-1)=,这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.
故式子中是分式的有3个.
故选:B.
此题考查了分式的定义,熟练掌握分式的定义是解题得到关键.
7、B
【解析】
一次函数y=kx+b的图象与x轴的交点横坐标就是kx+b=0的解.
【详解】
解:∵直线y=ax+b过点B(−2,0),
∴方程ax+b=0的解是x=−2,
故选:B.
此题主要考查了一次函数与一元一次方程,关键是掌握任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于确定已知直线y=ax+b与x轴的交点的横坐标的值.
8、B
【解析】
由图象得到经过2小时两人相遇,A选项正确,由于乙的速度是=40千米/时,乙的速度是甲的速度的2倍可知B选项错误,计算出乙到达终点时,甲走的路程,可得C选项正确,当0
相关试卷
这是一份2024-2025学年湖南省长沙市岳麓区九上数学开学联考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省长沙市雨花区雅礼教育集团九上数学开学复习检测模拟试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024-2025学年湖南省长沙市教科所数学九年级第一学期开学教学质量检测模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

