


重庆市育才成功学校2023-2024学年八年级数学第一学期期末学业水平测试模拟试题【含解析】
展开
这是一份重庆市育才成功学校2023-2024学年八年级数学第一学期期末学业水平测试模拟试题【含解析】,共22页。试卷主要包含了已知,则a+b+c的值是,下列语句正确的是,下列各组数是勾股数的是,已知,则的值为,下列各式能用平方差公式计算的是等内容,欢迎下载使用。
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( )
A.9,40,41B.5,12,13C.0.3,0.4,0.5D.8,24,25
2.若是无理数,则的值可以是( )
A.B.C.D.
3.在中,的对边分别是,下列条件中,不能说明是直角三角形的是( )
A.B.
C.D.
4.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是( )
A.B.C.4D.7
5.已知,则a+b+c的值是( )
A.2B.4C.±4D.±2
6.下列语句正确的是( )
A.的平方根是B.±3是9的平方根
C.﹣2是﹣8的负立方根D.的平方根是﹣2
7.在平面直角坐标系中,如果点A的坐标为(﹣1,3),那么点A一定在( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.下列各组数是勾股数的是( )
A.6,7,8B.1,2,3C.3,4,5D.5,5,9
9.已知,则的值为
A.5B.6C.7D.8
10.下列各式能用平方差公式计算的是( )
A.B.
C.D.
11.在给出的一组数据0,,,3.14,,中,无理数有( )
A.1个B.2个C.3个D.4个
12.判断命题“如果n<1,那么n2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为( )
A.﹣2B.﹣C.0D.
二、填空题(每题4分,共24分)
13.二次根式中字母的取值范围是________.
14.某校规定:学生的单科学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.已知某学生本学期数学的平时、期中和期末成绩分别是90分、90分和95分,那么他本学期数学学期综合成绩是__________分
15.如图所示,在中,是的平分线,是上一点,且,连接并延长交于,又过作的垂线交于,交为,则下列说法:①是的中点;②;③;④为等腰三角形;⑤连接,若,,则四边形的面积为24;其中正确的是______(填序号).
16.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为_____.
17.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.
18.如图,在中,,,分别为边,上一点,.将沿折叠,使点与重合,折痕交边于点.若为等腰三角形,则的度数为_____度.
三、解答题(共78分)
19.(8分)甲、乙两台机器共同加工一批零件,一共用了小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个)与甲加工时间之间的函数图象为折线,如图所示.
(1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;
(2)当时,求与之间的函数解析式;
(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?
20.(8分)如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)判断线段AB与OC 的位置关系是什么?并说明理由;
(3)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.
21.(8分)如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想.
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.
22.(10分)如图,在ΔABC中,AB=AC,E是AB上一点,F是AC延长线上一点,连EF交BC于D. 如果EB=CF,求证:DE=DF.
23.(10分)如图,在平面直角坐标系中,直线与轴交于点,与轴交于点,过点的直线交轴于,且面积为.
(1)求点的坐标及直线的解析式.
(2)如图1设点为线段中点,点为轴上一动点,连接,以为边向右侧作以为直角顶点的等腰,在点运动过程中,当点落在直线上时,求点的坐标.
(3)如图2,若为线段上一点,且满足,点为直线上一动点,在轴上是否存在点,使以点,,,为顶点的四边形为平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由.
24.(10分)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,BE=2DE=2,CD=.
(1)求AB的长;
(2)求AC的长.
25.(12分)如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.
26.如图 AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
参考答案
一、选择题(每题4分,共48分)
1、D
【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.
【详解】A、92+402=412,
∴此三角形是直角三角形,不合题意;
B、∵52+122=132,
∴此三角形是直角三角形,不合题意;
C、∵0.32+0.42=0.52,
∴此三角形是直角三角形,不合题意;
D、82+242≠252,
∴此三角形不是直角三角形,符合题意;
故选:D.
【点睛】
此题考查勾股定理的逆定理,解题关键在于在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
2、C
【解析】根据无理数的概念和算术平方根解答即可.
【详解】A.是有理数,错误;
B.是有理数,错误;
C.是无理数,正确;
D.是有理数,错误.
故选:C.
【点睛】
本题考查了无理数,关键是根据无理数的概念和算术平方根解答.
3、C
【分析】此题考查的是直角三角形的判定方法,大约有以下几种:
①勾股定理的逆定理,即三角形三边符合勾股定理;
②三个内角中有一个是直角,或两个内角的度数和等于第三个内角的度数;
根据上面两种情况进行判断即可.
【详解】解:A、由得a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;
B、由得∠C +∠B=∠A,此时∠A是直角,能够判定△ABC是直角三角形,不符合题意;
C、∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形,故此选项符合题意;
D、a:b:c=5:12:13,此时c2=b2+ a2,符合勾股定理的逆定理,△ABC是直角三角形,不符合题意;
故选:C.
【点睛】
此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三内角中有一个是直角的情况下,才能判定三角形是直角三角形.
4、A
【解析】试题解析:作AD⊥l3于D,作CE⊥l3于E,
∵∠ABC=90°,
∴∠ABD+∠CBE=90°
又∠DAB+∠ABD=90°
∴∠BAD=∠CBE,
,
∴△ABD≌△BCE
∴BE=AD=3
在Rt△BCE中,根据勾股定理,得BC=,
在Rt△ABC中,根据勾股定理,得AC=.
故选A.
考点:1.勾股定理;2.全等三角形的性质;3.全等三角形的判定.
5、D
【分析】先计算(a+b+c)2,再将代入即可求解.
【详解】∵
∴
∴
=4
∴a+b+c=±2
故选:D
【点睛】
本题考查了代数式的求值,其中用到了.
6、B
【分析】依据立方根、平方根定义和性质回答即可.
【详解】解:A、2的平方根是,故A错误;
B、±3是9的平方根,故B正确;
C、﹣2是﹣8的立方根,故C错误;
D、的平方根是±2,故D错误.
故选:B.
【点睛】
本题考查的是平方根,立方根的含义,及求一个数的平方根与立方根,掌握以上知识是解题的关键.
7、B
【分析】根据平面直角坐标系中点P(a,b),①第一象限:a>1,b>1;②第二象限:a1;③第三象限:a1;②第二象限:a1;③第三象限:a
相关试卷
这是一份重庆市育才成功学校2023-2024学年数学八上期末质量检测试题【含解析】,共20页。试卷主要包含了答题时请按要求用笔,下列命题中,是假命题的是,下列各式能用平方差公式计算的是等内容,欢迎下载使用。
这是一份重庆市育才成功学校2023-2024学年数学八上期末联考模拟试题【含解析】,共17页。试卷主要包含了考生必须保证答题卡的整洁,若,,则,下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
这是一份重庆市育才成功学校2023年数学八年级第一学期期末质量跟踪监视模拟试题【含解析】,共21页。试卷主要包含了下列因式分解正确的是, 的倒数是,下列说法错误的是,下列约分正确的是,若,则下列各式中不一定成立的是,已知关于x的一次函数y=等内容,欢迎下载使用。
