


2023-2024学年云南师大附中呈贡校区九年级数学第一学期期末达标测试试题含答案
展开
这是一份2023-2024学年云南师大附中呈贡校区九年级数学第一学期期末达标测试试题含答案,共8页。试卷主要包含了如图,AG等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为
A.3B.C.4D.
2.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )
A.1B.2C.D.
3.如图,点O是△ABC的内切圆的圆心,若∠A=80°,则∠BOC为( )
A.100°B.130°
C.50°D.65°
4.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是( )
A.1B.2C.1.5D.3
5.如图,AG:GD=4:1,BD:DC=2:3,则 AE:EC 的值是( )
A.3:2B.4:3C.6:5D.8:5
6.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其左视图是( )
A.B.C.D.
7.某鱼塘里养了100条鲤鱼、若干条草鱼和50条罗非鱼,通过多次捕捞实验后发现,捕捞到草鱼的频率稳定在0.5左右,可估计该鱼塘中草鱼的数量为( )
A.150B.100C.50D.200
8.如图,函数y1=x﹣1和函数的图象相交于点M(2,m),N(﹣1,n),若y1>y2,则x的取值范围是( )
A.x<﹣1或0<x<2B.x<﹣1或x>2
C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2
9.已知线段a、b、c、d满足ab=cd,把它改写成比例式,正确的是( )
A.a:d=c:bB.a:b=c:dC.c:a=d:bD.b:c=a:d
10.将6497.1亿用科学记数法表示为( )
A.6.4971×1012B.64.971×1010C.6.5×1011D.6.4971×1011
11.关于抛物线y=x2+6x﹣8,下列选项结论正确的是( )
A.开口向下B.抛物线过点(0,8)
C.抛物线与x轴有两个交点D.对称轴是直线x=3
12.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线分别交边BC、AB于点D、E如果BC=8,,那么BD=_____.
14.将二次函数y=x2﹣6x+8化成y=a(x+m)2+k的形式是_____.
15.一元二次方程的根是_____.
16.在纸上剪下一个圆和一个扇形纸片,使它们恰好围成一个圆锥(如图所示),如果扇形的圆心角为90°,扇形的半径为4,那么所围成的圆锥的高为_____.
17.如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=_____.
18.如图,矩形中,,,以为圆心,为半径画弧,交延长线于点,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_________.
三、解答题(共78分)
19.(8分)如图,有两个可以自由转动的均匀转盘转盘A被平均分成3等份,分别标上三个数字;转盘B被平均分成4等份,分别标上四个数字.有人为甲、乙两人设计了一个游戏规则;自由转动转盘A与B,转盘停止后,指针各指向一个数字,将指针所指的两个数字相加,如果和是6,那么甲获胜,否则为乙获胜.你认为这样的游戏规则是否公平?如果公平,请说明理由;如果不公平,怎样修改规则才能使游戏对双方公平?
20.(8分)如图,在平面直角坐标系中,△ABC顶点的坐标分别为A(﹣3,3),B(﹣5,2),C(﹣1,1).
(1)以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2,且A₁B₁C位于点C的异侧,并表示出点A1的坐标.
(2)作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.
(3)在(2)的条件下求出点B经过的路径长(结果保留π).
21.(8分)解方程:
(1)(x2)(x3)12
(2)3y212y
22.(10分)如图,在平面直角坐标系中,点P(﹣1,m)是双曲线y=上的一个点,过点P作PQ⊥x轴于点Q,连接PO,△OPQ的面积为1.
(1)求m的值和双曲线对应的函数表达式;
(2)若经过点P的一次函数y=kx+b(k≠0、b≠0)的图象与x轴交于点A,与y交于点B且PB=2AB,求k的值.
23.(10分)小王和小张利用如图所示的转盘做游戏,转盘的盘面被分为面积相等的1个扇形区域,且分别标有数字1,2,3,1.游戏规则如下:两人各转动转盘一次,分别记录指针停止时所对应的数字,如两次的数字都是奇数,则小王胜;如两次的数字都是偶数,则小张胜;如两次的数字是奇偶,则为平局.解答下列问题:
(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?
(2)该游戏是否公平?请用列表或画树状图的方法说明理由.
24.(10分)已知关于的一元二次方程有两个实数根,.
(1)求的取值范围:
(2)当时,求的值.
25.(12分)用配方法解方程2x2-4x-3=0.
26.(12分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.
(参考数据:≈1.414,≈1.1.结果精确到0.1米)
参考答案
一、选择题(每题4分,共48分)
1、B
2、C
3、B
4、B
5、D
6、B
7、A
8、D
9、A
10、D
11、C
12、B
二、填空题(每题4分,共24分)
13、
14、y=(x﹣3)2﹣1
15、x1=1, x2=2.
16、
17、
18、
三、解答题(共78分)
19、不公平,理由详见解析;规则改为:和是6或7,甲胜;否则乙胜.
20、(1)见解析,A1(3,﹣3);(2)见解析;(3)
21、(1),;(2)
22、(1)m=6,y=﹣; (2)k=﹣4或﹣2.
23、(1);(2)该游戏公平.
24、(1);(2)
25、x1=1+,x2=1-.
26、商务楼的高度为37.9米.
相关试卷
这是一份云南师大附中呈贡校区2023-2024学年数学九上期末教学质量检测试题含答案,共9页。
这是一份2023-2024学年云南师大附中呈贡校区八年级(上)期末数学试卷,共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份云南省昆明市+呈贡区云南师大附中呈贡校区2023-2024学年八年级上学期期末数学试卷+,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。