安徽省合肥市部分学校2023-2024学年八上数学期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.式子有意义的条件是( )
A.x≠2B.x>﹣2C.x≥2D.x>2
2.如图:若函数与的图象交于点,则关于的不等式的解集是( )
A.B.C.D.
3.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为( )
A.50°B.70°C.75°D.80°
4.无论x取什么数,总有意义的分式是
A.B.C.D.
5.若有一个外角是钝角,则一定是( )
A.钝角三角形B.锐角三角形
C.直角三角形D.以上都有可能
6.若是完全平方式,则m的值是( )
A.-1B.7C.7或-1D.5或1
7.如图,在平面直角坐标系中有一个3×3的正方形网格,其右下角格点(小正方形的顶点)A的坐标为(﹣1,1),左上角格点B的坐标为(﹣4,4),若分布在过定点(﹣1,0)的直线y=﹣k(x+1)两侧的格点数相同,则k的取值可以是( )
A.B.C.2D.
8.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为( )
A.28×10﹣9mB.2.8×10﹣8mC.28×109mD.2.8×108m
9.如图, 是中边的垂直平分线,若厘米, 厘米,则的周长为( )
A.B.C.D.
10.如图,已知,则数轴上点所表示的数为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在中的垂直平分线交于点,交于点,的垂直平分线交于点,交于点,则的长____________.
12.如图,等腰直角三角形ABC中, AB=4 cm.点 是BC边上的动点,以AD为直角边作等腰直角三角形ADE.在点D从点B移动至点C的过程中,点E移动的路线长为________cm.
13.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.
14.已知、满足方程组,则代数式______.
15.已知一个三角形的三条边长为2、7、,则的取值范围是_______.
16.如图,MN是正方形ABCD的一条对称轴,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD=_____°.
17.如图,已知a∥b,三角板的直角顶点在直线b上.若∠1=40°,则∠2=______度.
18.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为_____________________ .
三、解答题(共66分)
19.(10分)如图是一个正方体展开图,已知正方体相对两面的代数式的值相等;
(1)求a、b、c 的值;
(2)判断a+b﹣c的平方根是有理数还是无理数.
20.(6分)如图,是等边三角形,延长到,使,点是边的中点,连接并延长交于.
求证:(1);
(2).
21.(6分)如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.
(1)当∠BDA=128°时,∠EDC= ,∠AED= ;
(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
22.(8分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)
23.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对
他们进行了六次测试,测试成绩如下表(单位:环):
(1)根据表格中的数据,计算出甲的平均成绩是 环,乙的平均成绩是 环;
(2)分别计算甲、乙六次测试成绩的方差;
(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.
(计算方差的公式:s2=[])
24.(8分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.
(1)这项工程的规定时间是多少天?
(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?
25.(10分)计算
(1)4(a﹣b)2﹣(2a+b)(2a﹣b).
(2)先化简,再求值(a+2﹣)÷,其中a=1
26.(10分)解方程(或方程组)
(1) (2)
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、B
4、C
5、D
6、C
7、B
8、B
9、B
10、D
二、填空题(每小题3分,共24分)
11、
12、
13、12.1
14、-1
15、5x9
16、45
17、1
18、
三、解答题(共66分)
19、(1)a=3,b=1,c=±1;(1)无理数.
20、(1)见解析;(2)见解析.
21、(1)16°;52°;(2)当DC=2时,△ABD≌△DCE,理由见解析;(3)当∠BDA的度数为108°或72°时,△ADE的形状是等腰三角形.
22、a.240,b.乙;理由见解析.
23、解:(1)1;1.
(2)s2甲=;
s2乙=.
(3)推荐甲参加比赛更合适.
24、(1)这项工程的规定时间是2天;(2)该工程的费用为180000元.
25、(1)﹣8ab+5b2;(2),﹣.
26、(1),;(2)
成绩
人数
部门
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
甲
0
0
1
11
7
1
乙
部门
平均数
中位数
众数
甲
78.3
77.5
75
乙
78
80.5
81
第一次
第二次
第三次
第四次
第五次
第六次
甲
10
8
9
8
10
9
乙
10
7
10
10
9
8
安徽省合肥市部分学校2023-2024学年九上数学期末综合测试试题含答案: 这是一份安徽省合肥市部分学校2023-2024学年九上数学期末综合测试试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2023-2024学年安徽省合肥市行知学校九上数学期末学业水平测试模拟试题含答案: 这是一份2023-2024学年安徽省合肥市行知学校九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,若,则的值等于等内容,欢迎下载使用。
2023-2024学年安徽省合肥市庐江县志成学校九上数学期末教学质量检测模拟试题含答案: 这是一份2023-2024学年安徽省合肥市庐江县志成学校九上数学期末教学质量检测模拟试题含答案,共8页。试卷主要包含了如图,在中,下列事件中是随机事件的个数是,抛物线的顶点坐标是等内容,欢迎下载使用。

