终身会员
搜索
    上传资料 赚现金

    精品解析:江苏省扬州市2022-2023学年高一下学期期末数学试题(B)(解析版)

    立即下载
    加入资料篮
    精品解析:江苏省扬州市2022-2023学年高一下学期期末数学试题(B)(解析版)第1页
    精品解析:江苏省扬州市2022-2023学年高一下学期期末数学试题(B)(解析版)第2页
    精品解析:江苏省扬州市2022-2023学年高一下学期期末数学试题(B)(解析版)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    精品解析:江苏省扬州市2022-2023学年高一下学期期末数学试题(B)(解析版)

    展开

    这是一份精品解析:江苏省扬州市2022-2023学年高一下学期期末数学试题(B)(解析版),共15页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
    2022-2023学年度第二学期期末调研测试高一数学(B(全卷满分150分,考试时间120分钟)20236一、单项选择题:本大题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足为虚数单位),则在复平面上所对应的点位于(    .A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】C【解析】【分析】根据复数的除法运算求复数,再结合复数的几何意义分析判断.【详解】因为,则所以在复平面上所对应的点为,位于第三象限.故选:C.2. 的内角ABC的对边分别为abc.已知,则    .A.  B.  C.  D. 【答案】B【解析】【分析】由正弦定理代入求解即可.【详解】由正弦定理可得:,所以,所以.故选:B.3. 已知,则    .A.  B.  C.  D. 【答案】A【解析】【分析】利用二倍角的余弦公式求解.【详解】解:因为所以故选:A4. 已知一组数据分别是2.652.682.682.722.732.752.802.802.822.83,则它们的75百分位数为(    .A. 2.75 B. 2.80 C. 2.81 D. 2.82【答案】B【解析】【分析】由于样本数据是从小到大排列的,由百分位数的定义得到第75百分位数是第8个数.【详解】因为10个样本数据是从小到大排列的,且所以第75百分位数是第8个数2.80故选:B5. 已知非零向量的夹角为,则    .A. 0 B.  C.  D. 【答案】C【解析】【分析】根据夹角公式计算可得.【详解】因为非零向量的夹角为所以,所以.故选:C6. 已知m为两条不同的直线,为两个不同的平面,则下列命题正确的是(    .A. ,则B. ,则C. ,则D. ,则【答案】A【解析】【分析】根据直线与平面,平面与平面的位置关系,对选项逐一分析判断,选出正确的命题即可.【详解】对于选项A,因为,则垂直平面内任意一条线,又,所以所以,则有,所以选项A正确;对于选项B,当时,有,所以选项B错误;对于选项C,当时,可以相交,所以选项C错误;对于选项D,若时,有异面,所以选项D错误.故选:A.7. 抛掷两枚质地均匀的硬币一次,设第一枚硬币正面朝上为事件A第二枚硬币反面朝上为事件B,则下述正确的是(    .A. AB对立 B. AB互斥C.  D. AB相互独立【答案】D【解析】【分析】根据题意,列举出抛掷两枚质地均匀的硬币的所有结果,再逐一分析判断各个选项即可得到结果.【详解】由题意可得,抛掷两枚质地均匀的硬币的所有结果是:(正,正),(正,反),(反,正),(反,反),则事件包含的结果有:(正,正),(正,反),事件包含的结果有:(正,反),(反,反),显然事件,事件都包含(正,反)这一结果,即事件,事件能同时发生,所以,事件,事件既不互斥也不对立,故AB错误.又因为,而所以,故C错误,D正确.故选:D8. 如图,大运塔是扬州首座以钢结构为主体建设的直塔,为扬州中国大运河博物馆的主体建筑之一.小强同学学以致用,欲测量大运塔的高度.他选取与塔底在同一水平面内的两个观测点,测得,在两观测点处测得大运塔顶部的仰角分别为,则大运塔的高为(    .  A.  B.  C.  D. 【答案】B【解析】【分析】根据仰角分别得出,,在中由余弦定理即可求出.【详解】由题意得,在直角中,,所以在直角,所以,即中,由余弦定理得,因为,所以解得.即大运塔的高为.故选:B二、多项选择题:本大题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2.9. 如图,在平行四边形中,分别是边上的两个三等分点,则下列选项正确的有(    .  A.  B. C.  D. 【答案】AC【解析】【分析】结合图形,用向量共线的知识和三等分点的性质即可判断选项A;用向量的加法法则和向量的性质即可判断选项B和选项C;用向量的加法法则和减法法则即可判断选项D.【详解】对选项A,正确;对选项B,错误;对选项C,正确;对选项D,错误.故选:AC10. 已知函数,下列选项中正确的有(    .A. 的最大值为B. 的最小正周期是C. 在区间上单调递增D. 在区间上有且仅有2个零点【答案】AB【解析】【分析】先化简,即可由正弦函数的取值范围判断选项A,由正弦函数的周期公式判断选项B,由正弦函数的单调性判断选项C,解三角方程判断选项D.【详解】由题意得的最大值为,故选项A正确;的最小正周期是,故选项B正确;解得所以当时,单调递增,同理,当时,单调递减,所以在区间上单调递增,在区间上单调递减,故选项C错误;,解得,故选项D错误.故选:AB11. 从甲厂和乙厂生产的同一种产品中各抽取10件,对其使用寿命(单位:年)的检测结果如下表:甲厂产品35677888910乙厂产品4667888888记甲工厂样本使用寿命的众数为,平均数为,极差为,方差为;乙工厂样本使用寿命的众数为,平均数为,极差为,方差为.则下列选项正确的有(    .A.  B. C.  D. 【答案】BD【解析】【分析】根据题意,由众数,平均数,极差以及方差的计算公式,代入计算,即可得到结果.【详解】由题意可得, 故选:BD12. 中,已知的内角平分线且,则下列选项正确的有(    .A.  B. C.  D. 的面积最小值为【答案】ACD【解析】【分析】利用等面积法得到,即可判断A,再利用基本不等式求出最小值,即可判断D,利用余弦定理判断BC.【详解】依题意,即所以,所以,故A正确;,所以,当且仅当时取等号,所以(舍去),,当且仅当时取等号,故D正确;所以,即所以所以,所以,故C正确;由余弦定理所以,由于由已知条件无法得知的值,故无法确定的值,故B错误.故选:ACD三、填空题:本大题共4小题,每小题5分,共20.13. 已知复数为虚数单位),则=______【答案】5【解析】【分析】直接利用复数的模的公式求解.【详解】因为复数,所以.故答案为5【点睛】(1)本题主要考查复数的模的计算,意在考查学生对该知识的掌握水平.(2) 复数的模.14. 已知非零向量的夹角为45°,向量在向量上投影向量为,则_____________.【答案】2【解析】【分析】根据投影向量的概念分析运算.【详解】由题意可知:.故答案为:2.15. 求值:__________【答案】【解析】【分析】直接利用两角和的正切公式计算可得;【详解】解:故答案为:16. 已知正四棱柱中,,直线与平面所成角的正切值为2,则该正四棱柱的外接球的表面积为_____________.【答案】【解析】【分析】在正四棱柱中,连接,则为直线与平面所成角,结合题中的条件可得侧棱长,进一步得到外接球的半径,得到答案.【详解】连接,在正四棱柱中,平面所以为直线与平面所成角,因为在等腰直角三角形中,,所以在直角三角形中,所以又正四棱柱的外接球的直径为,则半径.所以球的表面积为:.故答案为: 四、解答题:本大题共6小题,计70.解答应写出必要的文字说明、证明过程或演算步骤.17. 已知向量.1,求实数的值;2,求实数的值.【答案】1    2.【解析】【分析】根据向量共线和垂直的坐标运算求解.【小问1详解】因为,所以,解得:.【小问2详解】因为,所以,解得:.18. 如图,在棱长为1的正方体中,E为棱的中点,.  1求证://平面EAC2求三棱锥的体积.【答案】1证明见解析    2【解析】【分析】1)根据线面平行的判定定理分析证明;2)根据锥体的体积公式运算求解.【小问1详解】因为底面ABCD为正方形,所以FBD中点因为E为棱的中点,所以//平面平面所以//平面【小问2详解】因为平面ABCD,底边ABCD为正方形为直角三角形,且所以三棱锥的体积.19. 已知函数1的最大值;2证明:函数有零点.【答案】1    2证明见解析【解析】【分析】1)利用辅助角公式将函数化简,由的取值范围求出的取值范围,即可得到函数的单调性,即可求出函数的最大值;2)首先得到的解析,求出区间端点的函数值,结合零点存在性定理即可证明.【小问1详解】因为因为,所以所以上单调递减,所以.【小问2详解】因为因为,且图象在上不间断,所以在区间上有零点.20. 某中学为了制定培养学生阅读习惯,指导学生提高阅读能力的方案,需了解全校学生的课外阅读情况,现随机调查了100名学生本学期开学以来(60天)的课外阅读时间,把他们的阅读时间分为5组:,并绘制如图所示的频率分布直方图.  1的值及这100名学生课外阅读时间的平均数.(各组数据的中间数值代表这组数据的平均水平)2为查找影响学生阅读时间因素,学校团委决定采用分层抽样的方法,从阅读时间为的学生中抽取6名参加座谈会.再从这6名学生中随机抽取2人,求恰好有一人读书时间在的概率.【答案】10.03;平均数为26    2.【解析】【分析】1)根据频率分布直方图中所有小矩形的面积之和为求出,再根据平均数公式计算可得;2)利用列举法列出所有可能结果,再由古典概型概率公式计算可得.【小问1详解】由题意得:100名学生阅读时间的平均数为:所以这100名学生阅读时间的平均数为26【小问2详解】由直方图得:课外阅读时间为的学生数的比为1:2所以,课外阅读时间在2名,阅读时间在4.记从这6名学生中随机抽取2人,恰好有一人读书时间在为事件M课外阅读时间在2名学生分别记为ab阅读时间在4名学生分别记为ABCD所以从这6人中任意抽取2人,样本空间,共15个样本点,其中,共8个样本点,所以.21. 如图,在三棱锥中,平面平面.1求证:2求二面角的大小.【答案】1证明见解析    2.【解析】【分析】(1)利用面面垂直性质定理得到平面再利用线面垂直的定义即可证明.(2)先利用平面角的定义得到二面角的平面角为,在中利用正弦定理可求得角度的大小.【小问1详解】平面平面平面平面,平面,由面面垂直的性质定理得平面平面【小问2详解】由(1)知平面平面平面就是二面角的平面角.,所以,二面角的大小为.22. 的内角ABC的对边分别为abc.已知.1求角C的大小;2D是边AB的三等分点(靠近点A),.求实数t的取值范围.【答案】1    2【解析】【分析】1)由,利用正弦定理得到,再利用余弦定理求解;2)设,在中,利用正弦定理结合得到,再利用平方关系得到,进而得到,利用余弦函数的性质求解.【小问1详解】解:由正弦定理可得:又∵,∴.【小问2详解】中,由正弦定理得:中,由正弦定理得:.,得.因为所以.因为,所以. 

    相关试卷

    精品解析:江苏省泰州市2022-2023学年高一下学期期末数学试题(解析版):

    这是一份精品解析:江苏省泰州市2022-2023学年高一下学期期末数学试题(解析版),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    精品解析:江苏省镇江市2022-2023学年高一下学期6月期末数学试题(解析版):

    这是一份精品解析:江苏省镇江市2022-2023学年高一下学期6月期末数学试题(解析版),共23页。试卷主要包含了 已知,若,则等内容,欢迎下载使用。

    江苏省扬州市2022-2023高一下学期期末调研测试数学试题B卷+答案:

    这是一份江苏省扬州市2022-2023高一下学期期末调研测试数学试题B卷+答案,共7页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map