中考数学三轮冲刺《二次函数压轴题》强化练习七(含答案)
展开中考数学三轮冲刺《二次函数压轴题》强化练习七
1.如图,抛物线y=ax2+bx+c与x轴交于原点O和点A,且其顶点B关于x轴的对称点坐标为(2,1).
(1)求抛物线的函数表达式;
(2)抛物线的对称轴上存在定点F,使得抛物线y=ax2+bx+c上的任意一点G到定点F的距离与点G到直线y=﹣2的距离总相等.
①证明上述结论并求出点F的坐标;
②过点F的直线l与抛物线y=ax2+bx+c交于M,N两点.
证明:当直线l绕点F旋转时,+是定值,并求出该定值;
(3)点C(3,m)是该抛物线上的一点,在x轴,y轴上分别找点P,Q,使四边形PQBC周长最小,直接写出P,Q的坐标.
2.如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.
(1)求抛物线的解析式;
(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;
(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值.
3.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点(x,y)的坐标值:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 0 | 3 | 4 | 3 | 0 | … |
(1)求出这条抛物线的解析式及顶点M的坐标;
(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC的最小值;
(3)如图2,点D是第四象限内抛物线上一动点,过点D作DF⊥x轴,垂足为F,△ABD的外接圆与DF相交于点E.试问:线段EF的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
4.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
5.如图,经过点A(0,-4)的抛物线y=x2+bx+c与x轴相交于点B(-0,0)和C,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=x2+bx+c向上平移个单位长度、再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.
6.如图,Rt△ABC中,∠ACB=90°,AB=8,AC=4,以AB所在直线为x轴建立平面直角坐标系,若C(0,2).
(1)请直接写出A、B的坐标;
(2)求经过A、B、C三点的抛物线表达式;
(3)l为抛物线对称轴,P是直线l右侧抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E为顶点的三角形与△ABC全等,求满足条件的点P,点E的坐标.
7.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,C是抛物线与y轴的交点,P是该抛物线上一动点.
(1)求该抛物线的解析式;
(2)在(1)中抛物线的对称轴上求一点M,使得△MAC是以AM为底的等腰三角形;求出点M的坐标.
(3)设(1)中的抛物线顶点为D,对称轴与直线BC交于点E,过抛物线上的动点P作x轴的垂线交线段BC于点Q,使得D、E、P、Q四点组成的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,请说明理由.
8.已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(4)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
0.中考数学三轮冲刺《二次函数压轴题》强化练习七(含答案)答案解析
一 、综合题
1.解:(1)∵顶点B关于x轴的对称点坐标为(2,1),
∴B(2,﹣1),
∴A(4,0),
将点O、点A、点B代入抛物线y=ax2+bx+c,
得到,解得,
∴y=x2﹣x;
(2)①设F(2,m),G(x,y),
∴G点到直线y=﹣2的距离为|y+2|,
∴(y+2)2=y2+4y+4,
∵y=x2﹣x,
∴(y+2)2=y2+4y+4=y2+x2﹣4x+4=y2+(x﹣2)2,
∴G到直线y=﹣2的距离与点(2,0)和G点的距离相等,
∴抛物线上的任意一点G到定点F的距离与点G到直线y=﹣2的距离总相等;
∵G到定点F的距离与点G到直线y=﹣2的距离相等,
∴(x﹣2)2+(m﹣x2﹣x+2)2=(x2﹣x+2)2,整理得,m(m﹣x2+2x)=0,
∵距离总相等,∴m=0,
∴F(2,0);
②设过点F的直线解析式为y=kx﹣2k,M(xM,yM),N(xN,yN),
联立,整理得x2﹣(4+4k)x+8k=0,
∴xM+xN=4+4k,xMxN=8k,
∴yM+yN=4k2,yMyN=﹣4k2,
∵M到F点与M点到y=﹣2的距离相等,N到F点与N点到y=﹣2的距离相等,
∴+=+===1,
∴+=1是定值;
(3)作B点关于y轴的对称点B',作C点关于x轴的对称点C',连接C'B'交x轴、y轴分别于点P、Q,
∵BQ=B'Q,CP=C'P,
∴四边形PQBC周长=BQ+PQ+PC+BC=B'Q+PQ+C'P+CB=C'B'+CB,
∵点C(3,m)是该抛物线上的一点∴C(3,﹣),
∵B(2,﹣1),∴B'(﹣2,﹣1),C'(3,),
∴直线B'C'的解析为y=x﹣,
∴Q(0,﹣),P(,0).
2.解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,
得,解得,
∴抛物线的解析式为y=-x2+x+2.
(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).
当y=0时,由-x2+x+2=0,得x1=1,x2=4,
∴C(4,0),
∴CF=AO=1,AF=3﹣(﹣1)=4;
又∵BF=2,
∴,
∵∠BFC=∠AFB=90°,
∴△BFC∽△AFB,
∴∠CBF=∠BAF,
∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,
∴BC∥AE,
∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,
∴△BCF≌△EAO(ASA),
∴BC=EA,
∴四边形ABCE是矩形;
∵OE=FB=2,
∴E(0,﹣2).
(3)如图2,作FL⊥BC于点L,连结AL、CD.
由(2)得∠BFC=90°,BF=2,CF=1,
∴CF=CD,CB=.
∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),
∴△FCL∽△BCF,
∴=,∴=,
∵∠DCL=∠BCD(公共角),
∴△DCL∽△BCD,
∴=,
∴LD=DB;
∵DA+LD≥AL,
∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.
∵CL=CF=,∴BL=,∴BL2=()2=,
又∵AB2=22+42=20,
∴AL===,DA+DB的最小值为.
3.解:(1)根据表格可得出A(﹣1,0),B(3,0),C(0,3),
设抛物线解析式为y=a(x+1)(x﹣3),
将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,
∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,
∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4);
(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,
∵A、B关于直线x=1对称,
∴AQ′=BQ′,
∵CP′∥BC′,P′Q′∥CC′,
∴四边形CC′Q′P′是平行四边形,
∴CP′=C′Q′,Q′P′=CC′=1,
在Rt△BOC′中,BC′=,
∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,
此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,
∴AQ+QP+PC的最小值为+1;
(3)线段EF的长为定值1.如图2,连接BE,
设D(t,﹣t2+2t+3),且t>3,
∵EF⊥x轴,
∴DF=﹣(﹣t2+2t+3)=t2﹣2t﹣3,
∵F(t,0),
∴BF=OF﹣OB=t﹣3,AF=t﹣(﹣1)=t+1,
∵四边形ABED是圆内接四边形,
∴∠DAF+∠BED=180°,
∵∠BEF+∠BED=180°,
∴∠DAF=∠BEF,
∵∠AFD=∠EFB=90°,
∴△AFD∽△EFB,
∴=,∴=,∴EF===1,
∴线段EF的长为定值1.
4.解:(1)依题意得:
,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3
∵对称轴为x=﹣1,且抛物线经过A(1,0),
∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,
得,解之得:,
∴直线y=mx+n的解析式为y=x+3;
(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.
把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),
即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);
(3)设P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,
①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;
综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).
5.解:(1)将A(0,﹣4)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:
解得:b=﹣1 c=﹣4
∴抛物线的解析式:y=x2﹣x﹣4.
(2)由题意,新抛物线的解析式可表示为:y=(x+m)2﹣(x+m)﹣4+7/2 ,
它的顶点坐标P:(1﹣m,﹣1);
由(1)的抛物线解析式可得:C(4,0);
那么直线AB:y=﹣2x﹣4;直线AC:y=x﹣4;
当点P在直线AB上时,﹣2(1﹣m)﹣4=﹣1,解得:m=5 2 ;
当点P在直线AC上时,(1﹣m)﹣4=﹣1,解得:m=﹣2;
∴当点P在△ABC内时,﹣2<m<5/2 ;
又∵m>0,
∴符合条件的m的取值范围:0<m<5/2 .
(3)由A(0,﹣4)、B(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;
如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°;
∴∠ONB=∠NBA+OAB=∠ACB=∠OMB+∠OAB,即∠ONB=∠OMB;
如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=AN•AM1;
易得:AB2=(﹣2)2+42=20,AN=OA﹣ON=4﹣2=2;
∴AM1=20÷2=10,OM1=AM1﹣OA=10﹣4=6;
而∠BM1A=∠BM2A=∠ABN,
∴OM1=OM2=6,AM2=OM2﹣OA=6﹣4=2.
综上,AM的长为6或2.
6.解:(1)∵C(0,2),
∴OC=2,
在Rt△AOC中,OA=2,
∴OB=AB﹣OA=8﹣2=6,
∴A(﹣2,0),B(6,0);
(2)设y=a(x+2)(x﹣6),把C(0,2)代入得:
2=a(0+2)(0﹣6),解得:a=﹣,
∴y=﹣(x+2)(x﹣6)=﹣x2+x+2,
∴该抛物线的表达式为y=﹣x2+x+2;
(3)在△BOC中,BC==4,
∵y=﹣x2+x+2=﹣(x﹣2)2+,
∴抛物线对称轴为直线x=2,
设P(m,﹣m2+m+2)(m>2),E(2,n),
①当△PDE≌△ACB时,如图1,
∵∠PDE=∠ACB=90°,
∴PD=AC=4,DE=BC=4,
∴m﹣2=4,解得:m=6,
∴P(6,0),D(2,0),
∴|n﹣0|=4,解得:n=±4,
∴E(2,4)或(2,﹣4),
②当△PDE≌△BCA时,如图2,
∵∠PDE=∠ACB=90°,
∴PD=BC=4,DE=AC=4,
∴m﹣2=4,解得:m=4+2,
∴P(4+2,﹣),D(2,﹣),
∴|n﹣(﹣)|=4,解得:n=4﹣或﹣4﹣,
∴E(2,4﹣)或(2,﹣4﹣);
综上所述,P(6,0),E(2,4)或(2,﹣4);
或P(4+2,﹣),E(2,4﹣)或(2,﹣4﹣).
7.解:(1)将A(1,0),B(﹣3,0)代入y=﹣x2+bx+c,
∴,解得,
∴y=﹣x2﹣2x+3;
(2)∵y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴抛物线的对称轴为直线x=﹣1,令x=0,则y=3,
∴C(0,3),
设M(﹣1,m),
∵△MAC是以AM为底的等腰三角形,
∴CM=CA,
∴1+(m﹣3)2=1+9,解得m=0或m=6(舍),
∴M(﹣1,0);
(3)存在P点,使得D、E、P、Q四点组成的四边形是平行四边形,理由如下:
由(2)知D(﹣1,4),
设直线BC的解析式为y=kx+b,
∴,解得,
∴y=x+3,
∴E(﹣1,2),
设P(t,﹣t2﹣2t+3),Q(t,t+3)(﹣3≤t≤0),
①当DE为平行四边形的对角线时,
,
∴t=﹣1,
∴P(﹣1,4)(舍);
②当DP为平行四边形的对角线时,
4﹣t2﹣2t+3=2+t+3,解得t=(舍);
③当DQ为平行四边形的对角线时,
4+t+3=2﹣t2﹣2t+3,解得t=﹣1(舍)或t=﹣2,
∴P(﹣2,3);
综上所述:P点坐标为(﹣2,3).
8.解:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即y=﹣x2﹣x+2;
(2)存在.当x=0,y=﹣x2﹣x+2=2,则C(0,2),∴OC=2,
∵A(﹣4,0),B(1,0),
∴OA=4,OB=1,AB=5,
当∠PCB=90°时,∵AC2=42+22=20,BC2=22+12=5,AB2=52=25
∴AC2+BC2=AB2
∴△ACB是直角三角形,∠ACB=90°,
∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);
当∠PBC=90°时,PB∥AC,如图1,设直线AC的解析式为y=mx+n,
把A(﹣4,0),C(0,2)代入得
,解得,
∴直线AC的解析式为y=x+2,
∵BP∥AC,∴直线BP的解析式为y=x+p,
把B(1,0)代入得+p=0,解得p=﹣,
∴直线BP的解析式为y=x﹣,
解方程组得或,
此时P点坐标为(﹣5,﹣3);
综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);
(3)存在点E,设点E坐标为(m,0),F(n,﹣n2﹣n+2)
①当AC为边,CF1∥AE1,易知CF1=3,此时E1坐标(﹣7,0),
②当AC为边时,AC∥EF,易知点F纵坐标为﹣2,
∴﹣n2﹣n+2=﹣2,解得n=,
得到F2(,﹣2),F3(,﹣2),
根据中点坐标公式得到: =或=,
解得m=或,此时E2(,0),E3(,0),
③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0),
综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,﹣2)或(,﹣2).
中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案): 这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案),共14页。
中考数学三轮冲刺《二次函数压轴题》强化练习十四(含答案): 这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十四(含答案),共13页。试卷主要包含了B两点.等内容,欢迎下载使用。
中考数学三轮冲刺《二次函数压轴题》强化练习十二(含答案): 这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十二(含答案),共15页。

