|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023届高三寒假数学二轮微专题45讲 35.极点极线结构及非对称韦达定理
    立即下载
    加入资料篮
    2023届高三寒假数学二轮微专题45讲 35.极点极线结构及非对称韦达定理01
    2023届高三寒假数学二轮微专题45讲 35.极点极线结构及非对称韦达定理02
    还剩2页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高三寒假数学二轮微专题45讲 35.极点极线结构及非对称韦达定理

    展开
    这是一份2023届高三寒假数学二轮微专题45讲 35.极点极线结构及非对称韦达定理,共4页。试卷主要包含了基础知识,非对称韦达定理,典例等内容,欢迎下载使用。

    极点极线结构及非对称韦达定理

    1.基础知识:极点极线

    椭圆极点和极线的定义与作图:已知椭圆ab>0),则称点和直线为椭圆的一对极点和极线.极点和极线是成对出现的.

    从定义我们共同思考和讨论几个问题并写下你的思考:

    (1)若点在椭圆上,则其对应的极线是什么?

    (2)椭圆的两个焦点对应的极线分别是什么?

    (3)过椭圆外(上、内)任意一点,如何作出相应的极线?

    如图,若点在曲线外,过点作两条割线依次交曲线交于,延长交于点,则直线即为点所对应的极线.

    假设椭圆方程为

    (1)焦点与准线:点与直线;(2)点与直线

    2.非对称韦达定理

    在一元二次方程中,若,设它的两个根分别为,则有根与系数关系:,借此我们往往能够利用韦达定理来快速处理之类的对称结构,但有时,我们会遇到涉及的不同系数的代数式的应算,比如求之类的结构,就相对较难地转化到应用韦达定理来处理了.特别是在圆锥曲线问题中,我们联立直线和圆锥曲线方程,消去 ,也得到一个一元二次方程,我们就会面临着同样的困难,可采用反过来应用韦达定理,会有较好的作用.

    3.典例

    (2020一卷)已知AB分别为椭圆Ea>1)的左、右顶点,GE的上顶点,P为直线x=6上的动点,PAE的另一交点为CPBE的另一交点为D

    1)求E的方程;

    2)证明:直线CD过定点.

    解析:由椭圆方程可得:

    椭圆方程为:

    2)证明:设

    则直线的方程为:,即:

    联立直线的方程与椭圆方程可得:,整理得:

    ,解得:

    代入直线可得:

    所以点的坐标为.

    同理可得:点的坐标为

    时,

    直线的方程为:

    整理可得:

    整理得:

    所以直线过定点

    时,直线,直线过点

    故直线CD过定点

    例2.已知椭圆,点在椭圆上.

    (1)求椭圆的方程;

    (2)若过点且不与轴垂直的直线与椭圆交于两点,,证明斜率之积为定值.

    解析:(1)由题意得,故椭圆,又点上,所以,得,故椭圆的方程即为

    (2)由已知直线,设的方程为

    联立两个方程得,消去得:

    ,设,则(*),因为,故,将(*)代入上式,可得:直线斜率之积为定值

     

    相关试卷

    高考数学二轮专题复习——调和点列和极点极线: 这是一份高考数学二轮专题复习——调和点列和极点极线,共5页。

    圆锥曲线系统班39、非对称韦达定理: 这是一份圆锥曲线系统班39、非对称韦达定理,共11页。

    2023届高三寒假数学二轮微专题45讲 09.等和线及应用: 这是一份2023届高三寒假数学二轮微专题45讲 09.等和线及应用,共3页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map