 
 
 
所属成套资源:2023年中考数学一轮复习课时练习含答案
2023年中考数学一轮复习《相似三角形》课时练习(含答案)
展开这是一份2023年中考数学一轮复习《相似三角形》课时练习(含答案),共8页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
2023年中考数学一轮复习
《相似三角形》课时练习
一 、选择题
1.在比例尺为1:50000的地图上量得甲、乙两地的距离为10cm,则甲、乙两地的实际距离是( )
A.500km B.50km C.5km D.0.5km
2.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是( )
A.4.5 B.8 C.10.5 D.14
3.下列四组图形中,一定相似的是( )
A.正方形与矩形 B.正方形与菱形
C.菱形与菱形 D.正五边形与正五边形
4.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABO与△A′B′O′是以点P为位似中心的位似图形,它们的顶点均在格点(网格线的交点)上,则点P的坐标为( )
A.(0,0) B.(0,1) C.(﹣3,2) D.(3,﹣2)
5.有甲、乙两个三角形木框,甲三角形木框的三边长分别为1,,,乙三角形木框的三边长分别为5,,,则甲、乙两个三角形( )
A.一定相似 B.一定不相似 C.不一定相似 D.无法判断
6.如图,在平行四边形ABCD中,点E是边AD的中点,连接EC交对角线BD于点F,则S△DEF:S△BCF等于( )
A.1:2 B.1:4 C.1:9 D.4:9
7.如图,在等边△ABC中,D为AC边上的一点,连接BD,M为BD上一点,且∠AMD=60°,AM交BC于E.当M为BD中点时,CD:AD的值为( )
A. B.- C. D.
8.如图,AB是半圆O直径,半径OC⊥AB,连接AC,∠CAB的平分线AD分别交OC于点E,交弧BC于点D,连接CD、OD.
以下三个结论:①AC∥OD;②AC=2CD;③线段CD是CE与CO的比例中项.
其中所有正确结论的序号是( )
A.①② B.①③ C.②③ D.①②③
二 、填空题
9.已知x:y=5:2,那么(x+y):y=______.
10.如图所示,D是∠ABC平分线上的一点,AB=15 cm,BD=12 cm,要使△ABD∽△DBC,则BC的长为________cm.
11.在平面直角坐标系中,已知A(6,3)、B(6,0)两点,以坐标原点O为位似中心,相似比为,把线段AB缩小后得到线段A′B′,则A′B′的长度等于____________.
12.如图1是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于D.已知AD=15mm,DC=24mm,OD=10mm.已知文件夹是轴对称图形,试利用图2,求图1中A,B两点的距离是______________mm.
13.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为 .
14.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为 .
三 、作图题
15.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.
(1)点A的坐标为___________,点C的坐标为___________.
(2)将△ABC向左平移7个单位,请画出平移后的△A1B1C1.若M为△ABC内的一点,其坐标为(a,b),则平移后点M的对应点M1的坐标为___________.
(3)以原点O为位似中心,将△ABC缩小,使变换后得到的△A2B2C2与△ABC对应边的比为1:2.请在网格内画出△A2B2C2,并写出点A2的坐标:___________.
四 、解答题
16.如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.
(1)求证:△APQ∽△CDQ;
(2)P点从A点出发沿AB边以每秒1个单位长度的速度向B点移动,移动时间为t秒.当t为何值时,DP⊥AC?
17.如图,AB∥FC,D是AB上一点,DF交AC于点E,DE=FE,分别延长FD和CB交于点G.
(1)求证:△ADE≌△CFE;
(2)若GB=2,BC=4,BD=1,求AB的长.
18.△ABC中,BC=12,高AD=8,矩形EFGH的一边GH在BC上,顶点E、F分别在AB、AC上,AD与EF交于点M.
(1)求证:AM•BC=AD•EF;
(2)设EF=x,EH=y,写出y与x之间的函数表达式;
(3)设矩形EFGH的面积为S,求S与x之间的函数表达式,并写出S的最大值.
参考答案
1.C
2.B
3.D
4.C
5.A.
6.B
7.B
8.B.
9.答案为:7:2
10.答案为:.
11.答案为:1.
12.答案为:30.
13.答案为:.
14.答案为:或.
15.解:(1)A点坐标为:(2,8),C点坐标为:(6,6);
(2)所画图形如下所示,其中△A1B1C1即为所求,根据平移规律:左平移7个单位,
可知M1的坐标(a﹣7,b);
(3)所画图形如下所示,其中△A2B2C2即为所求,点A2的坐标为(1,4)或(﹣1,﹣4).
16.解:(1)证明:∵四边形ABCD是矩形,
∴AB∥CD.
∴∠APQ=∠CDQ.
又∵∠AQP=∠CQD,
∴△APQ∽△CDQ.
(2)当t=5时,DP⊥AC.理由:
∵t=5,
∴AP=5.
∴=.
又∵=,
∴=.
又∵∠PAD=∠ADC=90°,
∴△PAD∽△ADC.
∴∠ADP=∠DCA.
∵∠ADP+∠CDP=∠ADC=90°,
∴∠DCA+∠CDP=90°.
∴∠DQC=90°,即DP⊥AC.
17.证明:(1)∵AB∥FC,
∴∠A=∠FCE,
在△ADE和△CFE中,
,
∴△ADE≌△CFE(AAS);
(2)∵AB∥FC,
∴△GBD∽△GCF,
∴GB:GC=BD:CF,
∵GB=2,BC=4,BD=1,
∴2:6=1:CF,
∴CF=3,
∵AD=CF,
∴AB=AD+BD=4.
18.解:(1)∵四边形EFGH是矩形,
∴EF∥BC,
∵AD是△ABC的高,
∴AD⊥BC,
∴AM⊥EF,
∵EF∥BC,
∴△AEF∽△ABC,
∴(相似三角形的对应边上高的比等于相似比);
(2)∵四边形EFGH是矩形,
∴∠FEH=∠EHG=90°,
∵AD⊥BC,
∴∠HDM=90°=∠FEH=∠EHG,
∴四边形EMDH是矩形,
∴DM=EH,
∵EF=x,EH=y,AD=8,
∴AM=AD﹣DM=AD﹣EH=8﹣y,
由(1)知,,
∴y=8﹣x(0<x<12);
(3)由(2)知,y=8﹣x,
∴S=S矩形EFGH=xy=x(8﹣x)=﹣(x﹣6)2+24,
∵a=﹣<0,
∴当x=6时,Smax=24.
相关试卷
这是一份中考数学一轮复习课时练习第20课时 相似三角形的实际应用 (含答案),共10页。
这是一份2023年浙教版中考数学一轮复习《相似三角形》单元练习(含答案),共11页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习《相似三角形》课后练习(含答案),共10页。试卷主要包含了选择题,填空题,作图题,解答题等内容,欢迎下载使用。
 
 
 
 
 
 
 
 
 
 
 


