年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    浙江省台州市三门县2021-2022学年中考五模数学试题含解析

    浙江省台州市三门县2021-2022学年中考五模数学试题含解析第1页
    浙江省台州市三门县2021-2022学年中考五模数学试题含解析第2页
    浙江省台州市三门县2021-2022学年中考五模数学试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省台州市三门县2021-2022学年中考五模数学试题含解析

    展开

    这是一份浙江省台州市三门县2021-2022学年中考五模数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,估计﹣2的值应该在,﹣0.2的相反数是,如果a﹣b=5,那么代数式等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.一、单选题
    在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的(  )
    A.平均数 B.众数 C.中位数 D.方差
    2.若等式(-5)□5=–1成立,则□内的运算符号为( )
    A.+ B.– C.× D.÷
    3.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为( )

    A.(0, 1) B.(1, -1) C.(0, -1) D.(1, 0)
    4.一个正方形花坛的面积为7m2,其边长为am,则a的取值范围为(  )
    A.0<a<1 B.l<a<2 C.2<a<3 D.3<a<4
    5.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=(  )

    A.12 B.8 C.4 D.3
    6.估计﹣2的值应该在(  )
    A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间
    7.﹣0.2的相反数是(  )
    A.0.2 B.±0.2 C.﹣0.2 D.2
    8.如果a﹣b=5,那么代数式(﹣2)•的值是(  )
    A.﹣ B. C.﹣5 D.5
    9.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
    10.如图,在△ABC中,AB=AC=10,CB=16,分别以AB、AC为直径作半圆,则图中阴影部分面积是(  )

    A.50π﹣48 B.25π﹣48 C.50π﹣24 D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若关于的一元二次方程有两个不相等的实数根,则的取值范围为__________.
    12.若关于x的方程=0有增根,则m的值是______.
    13.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.

    14.化简:=_____.
    15.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
    16.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.
    (1)求证:DF=PG;
    (2)若PC=1,求四边形PEFD的面积.

    18.(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.5的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理1污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:
    (1)求出y与x的函数关系式.(纯利润=总收入-总支出)
    (2)当y=106000时,求该厂在这个月中生产产品的件数.
    19.(8分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
    20.(8分)如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.若∠ABC=70°,则∠NMA的度数是   度.若AB=8cm,△MBC的周长是14cm.
    ①求BC的长度;
    ②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.

    21.(8分)给出如下定义:对于⊙O的弦MN和⊙O外一点P(M,O,N三点不共线,且点P,O在直线MN的异侧),当∠MPN+∠MON=180°时,则称点P是线段MN关于点O的关联点.图1是点P为线段MN关于点O的关联点的示意图.

    在平面直角坐标系xOy中,⊙O的半径为1.
    (1)如图2,已知M(,),N(,﹣),在A(1,0),B(1,1),C(,0)三点中,是线段MN关于点O的关联点的是   ;
    (2)如图3,M(0,1),N(,﹣),点D是线段MN关于点O的关联点.
    ①∠MDN的大小为   ;
    ②在第一象限内有一点E(m,m),点E是线段MN关于点O的关联点,判断△MNE的形状,并直接写出点E的坐标;
    ③点F在直线y=﹣x+2上,当∠MFN≥∠MDN时,求点F的横坐标x的取值范围.
    22.(10分)如图①,在正方形ABCD中,点E与点F分别在线段AC、BC上,且四边形DEFG是正方形.

    (1)试探究线段AE与CG的关系,并说明理由.
    (2)如图②若将条件中的四边形ABCD与四边形DEFG由正方形改为矩形,AB=3,BC=1.
    ①线段AE、CG在(1)中的关系仍然成立吗?若成立,请证明,若不成立,请写出你认为正确的关系,并说明理由.
    ②当△CDE为等腰三角形时,求CG的长.
    23.(12分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:
    员工
    管理人员
    普通工作人员
    人员结构
    总经理
    部门经理
    科研人员
    销售人员
    高级技工
    中级技工
    勤杂工
    员工数(名)
    1
    3
    2
    3

    24
    1
    每人月工资(元)
    21000
    8400
    2025
    2200
    1800
    1600
    950
    请你根据上述内容,解答下列问题:该公司“高级技工”有   名;所有员工月工资的平均数x为2500元,中位数为   元,众数为   元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平.

    24.如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.
    【详解】
    由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.
    故选C.
    【点睛】
    此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    2、D
    【解析】
    根据有理数的除法可以解答本题.
    【详解】
    解:∵(﹣5)÷5=﹣1,
    ∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,
    故选D.
    【点睛】
    考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.
    3、B
    【解析】
    试题分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.
    试题解析:由图形可知,

    对应点的连线CC′、AA′的垂直平分线过点(0,-1),根据旋转变换的性质,点(1,-1)即为旋转中心.
    故旋转中心坐标是P(1,-1)
    故选B.
    考点:坐标与图形变化—旋转.
    4、C
    【解析】
    先根据正方形的面积公式求边长,再根据无理数的估算方法求取值范围.
    【详解】
    解:∵一个正方形花坛的面积为,其边长为,


    则a的取值范围为:.
    故选:C.
    【点睛】
    此题重点考查学生对无理数的理解,会估算无理数的大小是解题的关键.
    5、C
    【解析】
    过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
    【详解】
    延长EP、FP分别交AB、BC于G、H,

    则由PD∥AB,PE∥BC,PF∥AC,可得,
    四边形PGBD,EPHC是平行四边形,
    ∴PG=BD,PE=HC,
    又△ABC是等边三角形,
    又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
    ∴PF=PG=BD,PD=DH,
    又△ABC的周长为12,
    ∴PD+PE+PF=DH+HC+BD=BC=×12=4,
    故选C.
    【点睛】
    本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
    6、A
    【解析】
    直接利用已知无理数得出的取值范围,进而得出答案.
    【详解】
    解:∵1<<2,
    ∴1-2<﹣2<2-2,
    ∴-1<﹣2<0
    即-2在-1和0之间.
    故选A.
    【点睛】
    此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.
    7、A
    【解析】
    根据相反数的定义进行解答即可.
    【详解】
    负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.
    【点睛】
    本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.
    8、D
    【解析】
    【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.
    【详解】(﹣2)•
    =
    =
    =a-b,
    当a-b=5时,原式=5,
    故选D.
    9、B
    【解析】
    试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
    ∵全班有x名同学,
    ∴每名同学要送出(x-1)张;
    又∵是互送照片,
    ∴总共送的张数应该是x(x-1)=1.
    故选B
    考点:由实际问题抽象出一元二次方程.
    10、B
    【解析】
    设以AB、AC为直径作半圆交BC于D点,连AD,如图,

    ∴AD⊥BC,
    ∴BD=DC=BC=8,
    而AB=AC=10,CB=16,
    ∴AD===6,
    ∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积,
    =π•52﹣•16•6,
    =25π﹣1.
    故选B.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、.
    【解析】
    根据判别式的意义得到,然后解不等式即可.
    【详解】
    解:关于的一元二次方程有两个不相等的实数根,

    解得:,
    故答案为:.
    【点睛】
    此题考查了一元二次方程的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根.
    12、2
    【解析】
    去分母得,m-1-x=0.
    ∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.
    13、
    【解析】
    过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=
    【详解】
    解:

    如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.
    ∵∠OAB=30°,∠ADE=90°,∠DEB=90°
    ∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°
    ∴∠DOA=∠OBE
    ∴△ADO∽△OEB
    ∵∠OAB=30°,∠AOB=90°,
    ∴OA∶OB=
    ∵点A坐标为(3,2)
    ∴AD=3,OD=2
    ∵△ADO∽△OEB

    ∴OE
    ∵OC∥AD∥BE
    根据平行线分线段成比例得:
    AC:BC=OD:OE=2∶=
    故答案为.
    【点睛】
    本题考查三角形相似的证明以及平行线分线段成比例.
    14、
    【解析】
    直接利用二次根式的性质化简求出答案.
    【详解】
    ,故答案为.
    【点睛】
    本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.
    15、1
    【解析】
    试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
    ∵正多边形的一个内角是140°,
    ∴它的外角是:180°-140°=40°,
    360°÷40°=1.
    故答案为1.
    考点:多边形内角与外角.
    16、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.

    三、解答题(共8题,共72分)
    17、(1)证明见解析;(2)1.
    【解析】
    作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等
    (2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出
    【详解】
    解:(1)证明:∵四边形ABCD为正方形,
    ∴AD=AB,
    ∵四边形ABPM为矩形,
    ∴AB=PM,
    ∴AD=PM,
    ∵DF⊥PG,
    ∴∠DHG=90°,
    ∴∠GDH+∠DGH=90°,
    ∵∠MGP+∠MPG=90°,
    ∴∠GDH=∠MPG,
    在△ADF和△MPG中,
    ∴△ADF≌△MPG(ASA),
    ∴DF=PG;
    (2)作PM⊥DG于M,如图,
    ∵PD=PG,
    ∴MG=MD,
    ∵四边形ABCD为矩形,
    ∴PCDM为矩形,
    ∴PC=MD,
    ∴DG=2PC=2;
    ∵△ADF≌△MPG(ASA),
    ∴DF=PG,
    而PD=PG,
    ∴DF=PD,
    ∵线段PG绕点P逆时针旋转90°得到线段PE,
    ∴∠EPG=90°,PE=PG,
    ∴PE=PD=DF,
    而DF⊥PG,
    ∴DF∥PE,
    即DF∥PE,且DF=PE,
    ∴四边形PEFD为平行四边形,
    在Rt△PCD中,PC=1,CD=3,
    ∴PD==,
    ∴DF=PG=PD=,
    ∵四边形CDMP是矩形,
    ∴PM=CD=3,MD=PC=1,
    ∵PD=PG,PM⊥AD,
    ∴MG=MD=1,DG=2,
    ∵∠GDH=∠MPG,∠DHG=∠PMG=90°,
    ∴△DHG∽△PMG,
    ∴,
    ∴GH==,
    ∴PH=PG﹣GH=﹣=,
    ∴四边形PEFD的面积=DF•PH=×=1.

    【点睛】
    本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值
    18、(1)y=19x-1(x>0且x是整数) (2)6000件
    【解析】
    (1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;
    (2)根据(1)中得出的式子,将y的值代入其中,求出x即可.
    【详解】
    (1)依题意得:y=80x-60x-0.5x•2-1,
    化简得:y=19x-1,
    ∴所求的函数关系式为y=19x-1.(x>0且x是整数)
    (2)当y=106000时,代入得:106000=19x-1,
    解得x=6000,
    ∴这个月该厂生产产品6000件.
    【点睛】
    本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.
    19、(1);(2)-1
    【解析】
    (1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
    (2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
    【详解】
    解:(1)
    ①+②得,.
    将时代入①得,,
    ∴.
    (2)设“□”为a,
    ∵x、y是一对相反数,
    ∴把x=-y代入x-y=4得:-y-y=4,
    解得:y=-2,
    即x=2,
    所以方程组的解是,
    代入ax+y=-8得:2a-2=-8,
    解得:a=-1,
    即原题中“□”是-1.
    【点睛】
    本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
    20、(1)50;(2)①6;②1
    【解析】
    试题分析:(1)根据等腰三角形的性质和线段垂直平分线的性质即可得到结论;
    (2)①根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM,然后求出△MBC的周长=AC+BC,再代入数据进行计算即可得解;
    ②当点P与M重合时,△PBC周长的值最小,于是得到结论.
    试题解析:解:(1)∵AB=AC,∴∠C=∠ABC=70°,∴∠A=40°.∵AB的垂直平分线交AB于点N,∴∠ANM=90°,∴∠NMA=50°.故答案为50;
    (2)①∵MN是AB的垂直平分线,∴AM=BM,∴△MBC的周长=BM+CM+BC=AM+CM+BC=AC+BC.∵AB=8,△MBC的周长是1,∴BC=1﹣8=6;
    ②当点P与M重合时,△PBC周长的值最小,理由:∵PB+PC=PA+PC,PA+PC≥AC,∴P与M重合时,PA+PC=AC,此时PB+PC最小,∴△PBC周长的最小值=AC+BC=8+6=1.

    21、(1)C;(2)①60;②E(,1);③点F的横坐标x的取值范围≤xF≤.
    【解析】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件;
    (2)①如图3-1中,作NH⊥x轴于H.求出∠MON的大小即可解决问题;
    ②如图3-2中,结论:△MNE是等边三角形.由∠MON+∠MEN=180°,推出M、O、N、E四点共圆,可得∠MNE=∠MOE=60°,由此即可解决问题;
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,首先证明点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),观察图形即可解决问题;
    【详解】
    (1)由题意线段MN关于点O的关联点的是以线段MN的中点为圆心,为半径的圆上,所以点C满足条件,
    故答案为C.
    (2)①如图3-1中,作NH⊥x轴于H.

    ∵N(,-),
    ∴tan∠NOH=,
    ∴∠NOH=30°,
    ∠MON=90°+30°=120°,
    ∵点D是线段MN关于点O的关联点,
    ∴∠MDN+∠MON=180°,
    ∴∠MDN=60°.
    故答案为60°.
    ②如图3-2中,结论:△MNE是等边三角形.

    理由:作EK⊥x轴于K.
    ∵E(,1),
    ∴tan∠EOK=,
    ∴∠EOK=30°,
    ∴∠MOE=60°,
    ∵∠MON+∠MEN=180°,
    ∴M、O、N、E四点共圆,
    ∴∠MNE=∠MOE=60°,
    ∵∠MEN=60°,
    ∴∠MEN=∠MNE=∠NME=60°,
    ∴△MNE是等边三角形.
    ③如图3-3中,由②可知,△MNE是等边三角形,作△MNE的外接圆⊙O′,

    易知E(,1),
    ∴点E在直线y=-x+2上,设直线交⊙O′于E、F,可得F(,),
    观察图象可知满足条件的点F的横坐标x的取值范围≤xF≤.
    【点睛】
    此题考查一次函数综合题,直线与圆的位置关系,等边三角形的判定和性质,锐角三角函数,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.
    22、(1)AE=CG,AE⊥CG,理由见解析;(2)①位置关系保持不变,数量关系变为;
    理由见解析;②当△CDE为等腰三角形时,CG的长为或或.
    【解析】
    试题分析:证明≌即可得出结论.
    ①位置关系保持不变,数量关系变为证明根据相似的性质即可得出.
    分成三种情况讨论即可.
    试题解析:(1)
    理由是:如图1,∵四边形EFGD是正方形,


    ∵四边形ABCD是正方形,


    ∴≌



    ∴ 即
    (2)①位置关系保持不变,数量关系变为
    理由是:如图2,连接EG、DF交于点O,连接OC,

    ∵四边形EFGD是矩形,

    Rt中,OG=OF,
    Rt中,

    ∴D、E、F、C、G在以点O为圆心的圆上,

    ∴DF为的直径,

    ∴EG也是的直径,
    ∴∠ECG=90°,即






    ②由①知:
    ∴设
    分三种情况:
    (i)当时,如图3,过E作于H,则EH∥AD,


    ∴ 由勾股定理得:



    (ii)当时,如图1,过D作于H,










    (iii)当时,如图5,




    综上所述,当为等腰三角形时,CG的长为或或.
    点睛:两组角对应,两三角形相似.
    23、(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)能反映该公司员工的月工资实际水平.
    【解析】
    (1)用总人数50减去其它部门的人数;
    (2)根据中位数和众数的定义求解即可;
    (3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;
    (4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.
    【详解】
    (1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);
    (2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;
    在这些数中1600元出现的次数最多,因而众数是1600元;
    (3)这个经理的介绍不能反映该公司员工的月工资实际水平.
    用1700元或1600元来介绍更合理些.
    (4)(元).
    能反映该公司员工的月工资实际水平.
    24、 (1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)
    【解析】
    解:(1)
    (2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)
    (3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)

    相关试卷

    浙江省台州市三门县重点达标名校2021-2022学年中考数学最后一模试卷含解析:

    这是一份浙江省台州市三门县重点达标名校2021-2022学年中考数学最后一模试卷含解析,共18页。

    浙江省台州市黄岩区2021-2022学年中考数学最后一模试卷含解析:

    这是一份浙江省台州市黄岩区2021-2022学年中考数学最后一模试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。

    浙江省台州市黄岩区2021-2022学年中考冲刺卷数学试题含解析:

    这是一份浙江省台州市黄岩区2021-2022学年中考冲刺卷数学试题含解析,共25页。试卷主要包含了已知二次函数,下列算式的运算结果正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map