终身会员
搜索
    上传资料 赚现金
    高中数学选择性必修三 6.1分类加法计数原理与分步乘法计数原理 第2课时 教案
    立即下载
    加入资料篮
    高中数学选择性必修三 6.1分类加法计数原理与分步乘法计数原理 第2课时 教案01
    高中数学选择性必修三 6.1分类加法计数原理与分步乘法计数原理 第2课时 教案02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第2课时教案设计

    展开
    这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第2课时教案设计,共5页。

    第2课时
    课后篇巩固提升
    基础达标练
    1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是( )
    A.2 160B.720C.240D.120
    解析第1张门票有10种分法,第2张门票有9种分法,第3张门票有8种分法,由分步乘法计数原理得共有10×9×8=720(种)分法.
    答案B
    2.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点(a,b)的坐标,能够确定不在x轴上的点的个数是( )
    A.100B.90C.81D.72
    解析分两步,第1步选b,因为b≠0,所以有9种不同的选法;第2步选a,因为a≠b,所以也有9种不同的选法.由分步乘法计数原理知共有9×9=81(个)点满足要求.
    答案C
    3.(2020北京鲁迅中学高二月考)算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字,如图,
    表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空,如图:
    如果把5根算筹以适当的方式全部放入下面的表格中,那么可以表示的三位数的个数为( )
    A.46B.44C.42D.40
    解析按每一位算筹的根数分类一共有15种情况,如下,
    (5,0,0),(4,1,0),(4,0,1),(3,2,0),(3,1,1),(3,0,2),(2,3,0),(2,2,1),(2,1,2),(2,0,3),(1,4,0),(1,3,1),(1,2,2),(1,1,3),(1,0,4).
    2根及2根以上的算筹可以表示两个数字,运用分步乘法计数原理,
    则上述情况能表示的三位数字个数分别为
    2,2,2,4,2,4,4,4,4,4,2,2,4,2,2.
    根据分步加法计数原理,5根算筹能表示的三位数字个数为
    2+2+2+4+2+4+4+4+4+4+2+2+4+2+2=44.故选B.
    答案B
    4.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( )
    A.42B.30C.20D.12
    解析原定的5个节目产生6个空位,将其中1个新节目插入,有6种不同的插法,然后6个节目产生7个空位,将另一个新节目插入,有7种不同的插法.由分步乘法计数原理知共有7×6=42(种)不同的插法.
    答案A
    5.(2020天津高二月考)某县总工会利用业余时间开设太极、书法、绘画三个培训班,甲、乙、丙、丁四人报名参加,每人只报名参加一项,且甲、乙不参加同一项,则不同的报名方法种数为 .
    解析甲有三个培训可选,甲、乙不参加同一项,所以乙有两个培训可选,丙、丁各有三个培训可选,根据分步乘法计数原理,不同的报名方法种数为3×2×3×3=54.
    答案54
    6.已知集合M={1,2,3,4},集合A,B为集合M的非空子集,若对∀x∈A,y∈B,x解析当A={1}时,B有23-1=7(种)情况;
    当A={2}时,B有22-1=3(种)情况;当A={3}时,B有1种情况;当A={1,2}时,B有22-1=3(种)情况;当A={1,3},{2,3},{1,2,3}时,B均有1种情况,所以集合M的“子集对”共有7+3+1+3+3=17(个).
    答案17
    7.五个工程队承建某项工程的5个不同的子项目,每个工程队承建1个,其中甲工程队不能承建1号子项目,则不同的承建方案有 种.
    解析完成承建任务可分五步.第1步,安排1号,有4种不同的承建方案;第2步,安排2号,有4种不同的承建方案;第3步,安排3号,有3种不同的承建方案;第4步,安排4号,有2种不同的承建方案;第5步,安排5号,有1种承建方案.由分步乘法计数原理得,共有4×4×3×2×1=96(种)不同的承建方案.
    答案96
    8.某文艺小组有20人,其中会唱歌的有14人,会跳舞的有10人,从中选出会唱歌与会跳舞的各1人参加演出,且既会唱歌又会跳舞的至多选1人,有多少种不同的选法?
    解第1类,首先从只会唱歌的10人中选出1人,有10种不同的选法,从会跳舞的10人中选出1人,有10种不同的选法,共有10×10=100(种)不同的选法;第2类,从既会唱歌又会跳舞的4人中选1人,再从只会跳舞的6人中选1人,共有4×6=24(种)不同的选法.所以一共有100+24=124(种)不同的选法.
    9.在3 000到8 000之间有多少个无重复数字的奇数?
    解分两类:一类是以3,5,7为首位的四位奇数,可分三步完成:先排首位有3种方法,再排个位有4种方法,最后排中间两个数有8×7种方法,所以满足要求的数有3×4×8×7=672(个).另一类是首位是4或6的四位奇数,也可分三步完成,满足要求的数有2×5×8×7=560(个).
    由分类加法计数原理得,满足要求的数共有672+560=1 232(个).
    10.如图是某校的校园设施平面图,现有不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,求有多少种不同的着色方案.
    解操场可从6种颜色中任选1种着色;餐厅可以从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可以从剩下的4种颜色中任选一种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可以从剩下的4种颜色中任选1种着色.根据分步乘法计数原理,知共有6×5×4×4=480(种)不同的着色方案.
    能力提升练
    1.袋中有8个不同的红球,7个不同的白球,6个不同的黄球,现从中任取两个不同颜色的球,不同的取法有( )
    A.336种B.21种
    C.104种D.146种
    解析分三类:当取出一红一白时,有8×7种不同的取法;当取出一红一黄时,有8×6种不同的取法;当取出一白一黄时,有7×6种不同的取法.由分类加法计数原理知有N=8×7+8×6+7×6=146(种)不同的取法.
    答案D
    2.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列个数为( )
    A.3B.4
    C.6D.8
    解析递增的等比数列为1,2,4;1,3,9;2,4,8;4,6,9共4个.同理,递减的等比数列也有4个,故所求的等比数列有8个.
    答案D
    3.现从甲、乙、丙等6名学生中安排4人参加4×100 m接力赛跑,第一棒只能从甲、乙两个人中安排一人,第四棒只能从甲、丙两个人中安排一人,则不同的安排方法共有 种.
    解析若甲跑第一棒,则丙跑第四棒,此时不同的安排方法有4×3=12(种);若乙跑第一棒,则不同的安排方法有2×4×3=24(种),故不同的安排方法共有24+12=36(种).
    答案36
    4.(2020浙江宁波高三专题练习)某超市内一排共有6个收费通道,每个通道处有1号、2号两个收费点,根据每天的人流量,超市准备周一选择其中的3处通道,要求3处通道互不相邻,且每个通道至少开通一个收费点,则周一这天超市选择收费的安排方式共有 种.
    解析设6个收费通道依次编号为1,2,3,4,5,6,从中选择3个互不相邻的通道,有135,136,146,246共4种不同的选法.
    对于每个通道,至少开通一个收费点,即可以开通1号收费点,开通2号收费点,同时开通两个收费点,共3种不同的安排方式.
    由分步乘法计数原理,可得超市选择收费的安排方式共有4×33=108(种).
    答案108
    5.从-3,-2,-1,0,1,2,3中任取三个不同的数作为抛物线y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第一象限,那么这样的抛物线共有多少条?
    解第1步,确定c的取值.由题意知c=0,所以c有1种取值方法;
    第2步,确定a的取值.由于a<0,因此a有3种取值方法;
    第3步,确定b的取值.由于b>0,因此b有3种取值方法.
    根据分步乘法计数原理,知满足题意的抛物线共有N=3×3×1=9(条).
    6.(1)从5种颜色中选出3种颜色,涂在一个四棱锥的五个顶点上,每一个顶点涂一种颜色,并使同一条棱上的两个顶点异色,求不同的涂色方法数;
    (2)从5种颜色中选出4种颜色,涂在一个四棱锥的五个顶点上,每个顶点上涂一种颜色,并使同一条棱上的两个顶点异色,求不同的涂色方法数.
    解(1)如图,由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,则A,C必须颜色相同,B,D必须颜色相同,所以共有5×4×3×1×1=60(种)不同的涂色方法.
    (2)(方法一)由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,则A,C可以颜色相同,B,D可以颜色相同,并且两组中必有一组颜色相同.所以,先从两组中选出一组涂同一颜色,有2种选法(如:B,D颜色相同);再从5种颜色中,选出四种颜色涂在S,A,B,C四个顶点上,最后D涂B的颜色,有5×4×3×2=120(种)不同的涂色方法.根据分步乘法计数原理,共有2×120=240(种)不同的涂色方法.
    (方法二)分两类.
    第1类,C与A颜色相同.由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,它们有5×4×3=60(种)不同的涂色方法.共有5×4×3×1×2=120(种)不同的涂色方法.第2类,C与A颜色不同.由题意知,四棱锥S-ABCD的顶点S,A,B所涂色互不相同,它们有5×4×3=60(种)不同的涂色方法.共有5×4×3×2×1=120(种)不同的涂色方法.由分类加法计数原理,共有120+120=240(种)不同的涂色方法.
    素养培优练
    1.(2020浙江高一课时练习)称子集A⊆M={1,2,3,4,5,6,7,8,9,10,11}是“好的”,如果它有下述性质——“若2k∈A,则2k-1∈A且2k+1∈A(k∈N)”(空集和M都是“好的”),则M中有多少个包含2个偶数的“好的”子集?
    解 含有2个偶数的“好的”子集A,有两种不同的情形:
    ①两偶数是相邻的,有4种可能:2,4;4,6;6,8;8,10.
    每种情况必有3个奇数相随(如2,4∈A,则1,3,5∈A).
    余下的3个奇数可能在A中,也可能不在A中,
    故这样的“好的”子集共有4×23=32(个).
    ②两偶数不相邻,有6种可能:2,6;2,8;2,10;4,8;4,10;6,10.
    每种情况必有4个奇数相随(如2,6∈A,则1,3,5,7∈A).
    余下的2个奇数可能在A中,也可能不在A中,
    故这样的“好的”子集共有6×22=24(个).
    综上所述,M中有32+24=56(个)包含2个偶数的“好的”子集.
    2.(2020河北迁西第一中学高二期中)用n种不同的颜色为下列两块广告牌着色(如图甲、乙),要求在A,B,C,D四个区域中相邻(有公共边界)的区域不用同一种颜色.
    (1)若n=6,则为甲图着色时共有多少种不同的方法?
    (2)若为乙图着色时共有120种不同的方法,求n.
    解 (1)对区域A,B,C,D按顺序着色,根据分步乘法计数原理,共有6×5×4×4=480(种)不同的方法.
    (2)对区域A,B,C,D按顺序着色,根据分步乘法计数原理,不同的着色方法共有n(n-1)(n-2)(n-3)=120(种),整理得(n2-3n)(n2-3n+2)=120,
    即(n2-3n)2+2(n2-3n)-120=0,
    故n2-3n-10=0或n2-3n+12=0(舍去),解得n=5.操

    宿舍区
    餐厅
    教学区
    相关教案

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教学设计: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教学设计,共4页。教案主要包含了教学内容解析,学生学情分析,教学目标设置,学习目标设置,教学策略分析,教学过程展示,设计意图等内容,欢迎下载使用。

    高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教学设计及反思: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理教学设计及反思,共17页。教案主要包含了本节内容分析,学情整体分析,教学活动准备,教学活动设计等内容,欢迎下载使用。

    人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时教案: 这是一份人教A版 (2019)选择性必修 第三册6.1 分类加法计数原理与分步乘法计数原理第1课时教案,共5页。

    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map