2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式(吉林中考)
展开2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章 分式(吉林中考)
一.填空题(共2小题)
1.(2021•吉林)计算:﹣= .
2.(2019•吉林)计算:•= .
二.解答题(共8小题)
3.(2022•长春)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?
4.(2022•吉林)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.
5.(2021•长春)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?
6.(2020•长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?
7.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.
8.(2019•长春)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.
9.(2018•长春)先化简,再求值:+,其中x=﹣1.
10.(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.
根据以上信息,解答下列问题.
(1)冰冰同学所列方程中的x表示 ,庆庆同学所列方程中的y表示 ;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题.
2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章 分式(吉林中考)
参考答案与试题解析
一.填空题(共2小题)
1.(2021•吉林)计算:﹣= .
【解答】解:﹣==.
故答案为:.
2.(2019•吉林)计算:•= .
【解答】解:•=,
故答案为:.
二.解答题(共8小题)
3.(2022•长春)为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?
【解答】解:设乙班平均每小时挖x千克土豆,
根据题意,得,
解得x=400,
经检验,x=400是原方程的根,且符合题意;
答:乙班平均每小时挖400千克土豆.
4.(2022•吉林)刘芳和李婷进行跳绳比赛.已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等.求李婷每分钟跳绳的个数.
【解答】解:设李婷每分钟跳绳x个,则刘芳每分钟跳绳x+20个,
根据题意列方程,得,
即135x=120(x+20),
解得x=160,
经检验x=160是原方程的解,
答:李婷每分钟跳绳160个.
5.(2021•长春)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?
【解答】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,
依题意得:=,
解得:x=7,
经检验,x=7是原方程的解,且符合题意.
答:每千克有机大米的售价为7元.
6.(2020•长春)在国家精准扶贫的政策下,某村企生产的黑木耳获得了国家绿色食品标准认证,绿标的认证,使该村企的黑木耳在市场上更有竞争力,今年每斤黑木耳的售价比去年增加了20元.预计今年的销量是去年的3倍,年销售额为360万元.已知去年的年销售额为80万元,问该村企去年黑木耳的年销量为多少万斤?
【解答】解:设该村企去年黑木耳的年销量为x万斤,则今年黑木耳的年销量为3x万斤,
依题意,得:﹣=20,
解得:x=2,
经检验,x=2是原方程的解,且符合题意.
答:该村企去年黑木耳的年销量为2万斤.
7.(2020•吉林)甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.
【解答】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,
根据题意得:=,
解得:x=12,
经检验,x=12是原方程的解,且符合题意,
答:乙每小时做12个零件.
8.(2019•长春)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务.求该灯具厂原计划每天加工这种彩灯的数量.
【解答】解:该灯具厂原计划每天加工这种彩灯的数量为x套,则实际每天加工彩灯的数量为1.2x套,
由题意得:﹣=5,
解得:x=300,
经检验,x=300是原方程的解,且符合题意;
答:该灯具厂原计划每天加工这种彩灯的数量为300套.
9.(2018•长春)先化简,再求值:+,其中x=﹣1.
【解答】解:+
=
=
=
=x+1,
当x=﹣1时,原式=﹣1+1=.
10.(2018•吉林)如图是学习分式方程应用时,老师板书的问题和两名同学所列的方程.
根据以上信息,解答下列问题.
(1)冰冰同学所列方程中的x表示 甲队每天修路的长度 ,庆庆同学所列方程中的y表示 甲队修路400米所需时间或乙队修路600米所需时间 ;
(2)两个方程中任选一个,并写出它的等量关系;
(3)解(2)中你所选择的方程,并回答老师提出的问题.
【解答】解:(1)∵冰冰是根据时间相等列出的分式方程,
∴x表示甲队每天修路的长度;
∵庆庆是根据乙队每天比甲队多修20米列出的分式方程,
∴y表示甲队修路400米所需时间或乙队修路600米所需时间.
故答案为:甲队每天修路的长度;甲队修路400米所需时间或乙队修路600米所需时间.
(2)冰冰用的等量关系是:甲队修路400米所用时间=乙队修路600米所用时间;
庆庆用的等量关系是:乙队每天修路的长度﹣甲队每天修路的长度=20米(选择一个即可).
(3)选冰冰的方程:=,
去分母,得:400x+8000=600x,
移项,x的系数化为1,得:x=40,
检验:当x=40时,x、x+20均不为零,
∴x=40.
答:甲队每天修路的长度为40米.
选庆庆的方程:﹣=20,
去分母,得:600﹣400=20y,
将y的系数化为1,得:y=10,
经验:当y=10时,分母y不为0,
∴y=10,
∴=40.
答:甲队每天修路的长度为40米.
2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章分式(青海中考): 这是一份2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章分式(青海中考),共7页。试卷主要包含了分解因式,解方程,计算,先化简,再求值等内容,欢迎下载使用。
2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考): 这是一份2022-2023学年人教版八年级上学期数学期末复习培优练习-第15章+分式+选择、填空题+(辽宁中考),共9页。
2022-2023学年上学期人教版八年级数学期末复习培优练习-第15章+分式(广西中考): 这是一份2022-2023学年上学期人教版八年级数学期末复习培优练习-第15章+分式(广西中考),共11页。试卷主要包含了÷,其中x=2021,•,其中x=,先化简,再计算,,其中x=3,,其中a=3等内容,欢迎下载使用。

