


2022-2023九年级数学上学期期末复习培优练习-第22章二次函数解答题 中档题(辽宁中考)
展开
这是一份2022-2023九年级数学上学期期末复习培优练习-第22章二次函数解答题 中档题(辽宁中考),共26页。试卷主要包含了之间满足如图所示的一次函数关系,,点P是抛物线的顶点,连接PC,,其中50≤x≤80,分别相交于点P,Q等内容,欢迎下载使用。
2022-2023九年级数学上学期期末复习培优练习
第22章二次函数解答题 中档题
16.(2022•盘锦)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
17.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:
售价(元/本)
……
22
23
24
25
……
每天销售量(本)
……
80
78
76
74
……
(1)求A,B两款纪念册每本的进价分别为多少元;
(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;
①直接写出B款纪念册每天的销售量(用含m的代数式表示);
②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?
18.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C(0,3),点P是抛物线的顶点,连接PC.
(1)求抛物线的函数表达式并直接写出顶点P的坐标.
(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.
①当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;
②在①的条件下,当点Q在x轴上方时,过点Q作直线l垂直于AQ,直线y=x﹣交直线l于点F,点G在直线y=x﹣上,且AG=AQ时,请直接写出GF的长.
19.(2021•大连)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中50≤x≤80.
(1)求y关于x的函数解析式;
(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?
20.(2021•营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
21.(2020•盘锦)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.
(1)当100≤x≤300时,y与x的函数关系式为 .
(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?
22.(2020•鞍山)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.
(1)求抛物线的解析式;
(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AMC面积的时,请直接写出线段AM的长.
23.(2020•朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价x(元)
40
60
80
日销售量y(件)
80
60
40
(1)直接写出y与x的关系式 ;
(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.
24.(2020•锦州)某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量y(千克)与每千克售价x(元)满足一次函数关系,其部分对应数据如下表所示:
每千克售价x(元)
…
25
30
35
…
日销售量y(千克)
…
110
100
90
…
(1)求y与x之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
25.(2020•大连)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.
(1)如图,函数F1为y=x+1,当t=2时,PQ的长为 ;
(2)函数F1为y=,当PQ=6时,t的值为 ;
(3)函数F1为y=ax2+bx+c(a≠0),
①当t=时,求△OPQ的面积;
②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.
26.(2020•鞍山)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:
每件售价x(元)
…
15
16
17
18
…
每天销售量y(件)
…
150
140
130
120
…
(1)求y关于x的函数解析式;
(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;
(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?
27.(2020•丹东)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/件)
60
65
70
销售量y(件)
1400
1300
1200
(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?
28.(2020•营口)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).
(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?
【参考答案】
16.(2022•盘锦)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?
(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?
【解答】解:(1)设一次函数的关系式为y=kx+b,
由题图可知,函数图象过点(25,50)和点(35,30).
把这两点的坐标代入一次函数y=kx+b,
得,
解得,
∴一次函数的关系式为y=﹣2x+100;
(2)根据题意,设当天玩具的销售单价是x元,
由题意得,
(x﹣10)×(﹣2x+100)=600,
解得:x1=40,x2=20,
∴当天玩具的销售单价是40元或20元;
(3)根据题意,则w=(x﹣10)×(﹣2x+100),
整理得:w=﹣2(x﹣30)2+800;
∵﹣2<0,
∴当x=30时,w有最大值,最大值为800;
∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.
17.(2022•营口)某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:
售价(元/本)
……
22
23
24
25
……
每天销售量(本)
……
80
78
76
74
……
(1)求A,B两款纪念册每本的进价分别为多少元;
(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;
①直接写出B款纪念册每天的销售量(用含m的代数式表示);
②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?
【解答】解:(1)设A款纪念册每本的进价为a元,B款纪念册每本的进价为b元,
根据题意得:,
解得,
答:A款纪念册每本的进价为20元,B款纪念册每本的进价为14元;
(2)①根据题意,A款纪念册每本降价m元,可多售出2m本A款纪念册,
∵两款纪念册每天销售总数不变,
∴B款纪念册每天的销售量为(80﹣2m)本;
②设B款纪念册每天的销售量与售价之间满足的一次函数关系是y=kx+b',
根据表格可得:,
解得,
∴y=﹣2x+124,
当y=80﹣2m时,x=22+m,
即B款纪念册每天的销售量为(80﹣2m)本时,每本售价是(22+m)元,
设该店每天所获利润是w元,
由已知可得w=(32﹣m﹣20)(40+2m)+(22+m﹣14)(80﹣2m)=﹣4m2+48m+1120=﹣4(m﹣6)2+1264,
∵﹣4<0,
∴m=6时,w取最大值,最大值为1264元,
此时A款纪念册售价为32﹣m=32﹣6=26(元),
答:当A款纪念册售价为26元时,该店每天所获利润最大,最大利润是1264元.
18.(2021•沈阳)如图,平面直角坐标系中,O是坐标原点,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点B坐标是(3,0).抛物线与y轴交于点C(0,3),点P是抛物线的顶点,连接PC.
(1)求抛物线的函数表达式并直接写出顶点P的坐标.
(2)直线BC与抛物线对称轴交于点D,点Q为直线BC上一动点.
①当△QAB的面积等于△PCD面积的2倍时,求点Q的坐标;
②在①的条件下,当点Q在x轴上方时,过点Q作直线l垂直于AQ,直线y=x﹣交直线l于点F,点G在直线y=x﹣上,且AG=AQ时,请直接写出GF的长.
【解答】解(1)由题意得,
,
∴b=2,
∴y=﹣x2+2x+3
=﹣((x﹣1)2+4,
∴P(1,4).
(2)①如图1,
作CE⊥PD于E,
∵C (0,3),B (3,0),
∴直线BC:y=﹣x+3,
∴D(1,2),可设Q(a,3﹣a),
∴CE=PE=DE,
∴△PCD是等腰直角三角形,
∴S△PCD=PD•CE=×2×1=1,
∴AB•|3﹣a|=2,
∴×4•|3﹣a|=2,
∴a=2或a=4.
∴Q(2,1)或(4,﹣1).
②如图2,
设G(m,m﹣),
由AG2=AQ2得,
(m+1)2+=(2+1)2+12,
化简,得
5m2+2m﹣16=0,
∴m1=﹣2,m2=,
∴G1(﹣2,﹣3),G2(,﹣),
作QH⊥AB于H,
∵AQ⊥QF,
∴△AHQ∽△QHM,
∴QH2=AH•HM,
即:12=3•HM,
∴HM=,
∴M(,0),
设直线QM是:y=kx+b,
∴,
∴k=﹣3,b=7,
∴y=﹣3x+7,
由得,
x=,y=﹣
∴F(,﹣)
∴G1F==,
G2F==.
19.(2021•大连)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中50≤x≤80.
(1)求y关于x的函数解析式;
(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?
【解答】解:(1)设y=kx+b,
将(50,100)、(80,40)代入,得:,
解得:
∴y=﹣2x+200 (50≤x≤80);
(2)设电商每天获得的利润为w元,
则w=(x﹣40)(﹣2x+200)
=﹣2x2+280x﹣8000
=﹣2(x﹣70)2+1800,
∵﹣2<0,且对称轴是直线x=70,
又∵50≤x≤80,
∴当x=70时,w取得最大值为1800,
答:该电商售价为70元时获得最大利润,最大利润是1800元.
20.(2021•营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).
(1)直接写出y与x的函数关系式;
(2)当售价为多少时,商家所获利润最大,最大利润是多少?
【解答】解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),
将点(40,300)、(60,100)代入上式得:
,
解得:,
∴函数的表达式为:y=﹣10x+700(40≤x≤60),
设线段BC的表达式为:y=mx+n(60<x≤70),
将点(60,100)、(70,150)代入上式得:
,
解得:,
∴函数的表达式为:y=5x﹣200(60<x≤70),
∴y与x的函数关系式为:y=;
(2)设获得的利润为w元,
①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,
∵﹣10<0,
∴当x=50时,w有最大值,最大值为4000元;
②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,
∵5>0,
∴当60<x≤70时,w随x的增大而增大,
∴当x=70时,w有最大值,最大值为:5(70﹣50)2+2500=4500(元),
综上,当售价为70元/件时,该商家获得的利润最大,最大利润为4500元.
21.(2020•盘锦)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.
(1)当100≤x≤300时,y与x的函数关系式为 y=﹣x+110 .
(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?
(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?
【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:
,
解得:,
∴y与x的函数关系式为:y=﹣x+110,
故答案为:y=﹣x+110;
(2)当x=200时,y=﹣20+110=90,
∴90×200=18000(元),
答:某零售商一次性批发A品牌服装200件,需要支付18000元;
(3)分两种情况:
①当100≤x≤300时,w=(﹣x+110﹣71)x=﹣+39x=﹣(x﹣195)2+3802.5,
∵批发件数x为10的正整数倍,
∴当x=190或200时,w有最大值是:﹣(200﹣195)2+3802.5=3800;
②当300<x≤400时,w=(80﹣71)x=9x,
当x=400时,w有最大值是:9×400=3600,
∴一次性批发A品牌服装x(100≤x≤400)件时,x为190或200时,w最大,最大值是3800元.
22.(2020•鞍山)在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点A(﹣2,﹣4)和点C(2,0),与y轴交于点D,与x轴的另一交点为点B.
(1)求抛物线的解析式;
(2)如图1,连接BD,在抛物线上是否存在点P,使得∠PBC=2∠BDO?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图2,连接AC,交y轴于点E,点M是线段AD上的动点(不与点A,点D重合),将△CME沿ME所在直线翻折,得到△FME,当△FME与△AME重叠部分的面积是△AMC面积的时,请直接写出线段AM的长.
【解答】解:(1)∵抛物线y=ax2+bx+2经过点A(﹣2,﹣4)和点C(2,0),
则,解得:,
∴抛物线的解析式为y=﹣x2+x+2;
(2)存在,理由是:
在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,
在y=﹣x2+x+2中,
令y=0,解得:x=2或﹣1,
∴点B坐标为(﹣1,0),
∴点E坐标为(1,0),
可知:点B和点E关于y轴对称,
∴∠BDO=∠EDO,即∠BDE=2∠BDO,
∵D(0,2),
∴DE===BD,
在△BDE中,×BE×OD=×BD×EF,
即2×2=×EF,解得:EF=,
∴DF=,
∴tan∠BDE=,
若∠PBC=2∠BDO,
则∠PBC=∠BDE,
∵BD=DE=,BE=2,
则BD2+DE2>BE2,
∴∠BDE为锐角,
当点P在第三象限时,
∠PBC为钝角,不符合;
当点P在x轴上方时,
∵∠PBC=∠BDE,设点P坐标为(c,﹣c2+c+2),
过点P作x轴的垂线,垂足为G,
则BG=c+1,PG=﹣c2+c+2,
∴tan∠PBC==,
解得:c=,
∴﹣c2+c+2=,
∴点P的坐标为(,);
当点P在第四象限时,
同理可得:PG=c2﹣c﹣2,BG=c+1,
tan∠PBC=,
解得:c=,
∴,
∴点P的坐标为(,),
综上:点P的坐标为(,)或(,);
(3)设EF与AD交于点N,
∵A(﹣2,﹣4),D(0,2),设直线AD表达式为y=mx+n,
则,解得:,
∴直线AD表达式为y=3x+2,
设点M的坐标为(s,3s+2),
∵A(﹣2,﹣4),C(2,0),设直线AC表达式为y=m1x+n1,
则,解得:,
∴直线AC表达式为y=x﹣2,
令x=0,则y=﹣2,
∴点E坐标为(0,﹣2),
可得:点E是线段AC中点,
∴△AME和△CME的面积相等,
由于折叠,
∴△CME≌△FME,即S△CME=S△FME,
由题意可得:
当点F在直线AC上方时,
∴S△MNE=S△AMC=S△AME=S△FME,
即S△MNE=S△ANE=S△MNF,
∴MN=AN,FN=NE,
∴四边形FMEA为平行四边形,
∴CM=FM=AE=AC=,
∵M(s,3s+2),
∴,
解得:s=或0(舍),
∴M(,),
∴AM=,
当点F在直线AC下方时,如图,
同理可得:四边形AFEM为平行四边形,
∴AM=EF,
由于折叠可得:CE=EF,
∴AM=EF=CE=,
综上:AM的长度为或.
23.(2020•朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:
销售单价x(元)
40
60
80
日销售量y(件)
80
60
40
(1)直接写出y与x的关系式 y=﹣x+120 ;
(2)求公司销售该商品获得的最大日利润;
(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.
【解答】解:(1)设解析式为y=kx+b,
将(40,80)和(60,60)代入,可得,解得:,
所以y与x的关系式为y=﹣x+120,
故答案为:y=﹣x+120;
(2)设公司销售该商品获得的日利润为w元,
w=(x﹣30)y=(x﹣30)(﹣x+120)=﹣x2+150x﹣3600=﹣(x﹣75)2+2025,
∵x﹣30≥0,﹣x+120≥0,
∴30≤x≤120,
∵﹣1<0,
∴抛物线开口向下,函数有最大值,
∴当x=75时,w最大=2025,
答:当销售单价是75元时,最大日利润是2025元.
(3)w=(x﹣30﹣10)(﹣x+120)=﹣x2+160x﹣4800=﹣(x﹣80)2+1600,
当w最大=1500时,﹣(x﹣80)2+1600=1500,
解得x1=70,x2=90,
∵40≤x≤a,
∴有两种情况,
①a<80时,在对称轴左侧,w随x的增大而增大,
∴当x=a=70时,w最大=1500,
②a≥80时,在40≤x≤a范围内w最大=1600≠1500,
∴这种情况不成立,
∴a=70.
24.(2020•锦州)某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量y(千克)与每千克售价x(元)满足一次函数关系,其部分对应数据如下表所示:
每千克售价x(元)
…
25
30
35
…
日销售量y(千克)
…
110
100
90
…
(1)求y与x之间的函数关系式;
(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?
(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?
【解答】解:(1)设y=kx+b,
将(25,110)、(30,100)代入,得:,
解得:,
∴y=﹣2x+160;
(2)由题意得:(x﹣20)(﹣2x+160)=1000,
即﹣2x2+200x﹣3200=1000,
解得:x=30或70,
又∵每千克售价不低于成本,且不高于40元,即20≤x≤40,
答:该超市要想获得1000的日销售利润,每千克樱桃的售价应定为30元.
(3)设超市日销售利润为w元,
w=(x﹣20)(﹣2x+160),
=﹣2x2+200x﹣3200,
=﹣2(x﹣50)2+1800,
∵﹣2<0,
∴当20≤x≤40时,w随x的增大而增大,
∴当x=40时,w取得最大值为:w=﹣2(40﹣50)2+1800=1600,
答:当每千克樱桃的售价定为40元时日销售利润最大,最大利润是1600元.
25.(2020•大连)在平面直角坐标系xOy中,函数F1和F2的图象关于y轴对称,它们与直线x=t(t>0)分别相交于点P,Q.
(1)如图,函数F1为y=x+1,当t=2时,PQ的长为 4 ;
(2)函数F1为y=,当PQ=6时,t的值为 1 ;
(3)函数F1为y=ax2+bx+c(a≠0),
①当t=时,求△OPQ的面积;
②若c>0,函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),当c≤x≤c+1时,设函数F1的最大值和函数F2的最小值的差为h,求h关于c的函数解析式,并直接写出自变量c的取值范围.
【解答】解:(1)∵F1:y=x+1,
F1和F2关于y轴对称,
∴F2:y=﹣x+1,
分别令x=2,则2+1=3,﹣2+1=﹣1,
∴P(2,3),Q(2,﹣1),
∴PQ=3﹣(﹣1)=4,
故答案为:4;
(2)∵F1:,
可得:F2:,
∵x=t,可得:P(t,),Q(t,),
∴PQ=﹣==6,
解得:t=1,
经检验:t=1是原方程的解,
故答案为:1;
(3)①∵F1:y=ax2+bx+c,
∴F2:y=ax2﹣bx+c,
∵t=,分别代入F1,F2,
可得:P(,),Q(,),
∴PQ=||=,
∴S△OPQ==1;
②∵函数F1和F2的图象与x轴正半轴分别交于点A(5,0),B(1,0),
而函数F1和F2的图象关于y轴对称,
∴函数F1的图象经过A(5,0)和(﹣1,0),
∴设F1:y=a(x+1)(x﹣5)=ax2﹣4ax﹣5a,
则F2:y=ax2+4ax﹣5a,
∴F1的图象的对称轴是直线x=2,且c=﹣5a,
∴a=,
∵c>0,则a<0,c+1>1,
而F2的图象在x>0时,y随x的增大而减小,
当0<c<1时,
F1的图象y随x的增大而增大,F2的图象y随x的增大而减小,
∴当x=c+1时,y=ax2﹣4ax﹣5a的最大值为a(c+1)2﹣4a(c+1)﹣5a,
y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,
则h=a(c+1)2﹣4a(c+1)﹣5a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣8ac﹣8a,
又∵a=,
∴h=;
当1≤c≤2时,
F1的最大值为=﹣9a,F2的图象y随x的增大而减小,
∴F2的最小值为:a(c+1)2+4a(c+1)﹣5a,
则h=﹣9a﹣[a(c+1)2+4a(c+1)﹣5a]=﹣a(c+1)2﹣4a(c+1)﹣4a=﹣ac2﹣6ac﹣9a,
又∵a=,
∴h=,
当c>2时,
F1的图象y随x的增大而减小,F2的图象y随x的增大而减小,
∴当x=c时,y=ax2﹣4ax﹣5a的最大值为ac2﹣4ac﹣5a,
当x=c+1时,y=ax2+4ax﹣5a的最小值为a(c+1)2+4a(c+1)﹣5a,
则h=ac2﹣4ac﹣5a﹣[a(c+1)2+4a(c+1)﹣5a],
又∵a=,
∴h=2c2+c;
综上:h关于x的解析式为:h=.
26.(2020•鞍山)某工艺品厂设计了一款每件成本为11元的工艺品投放市场进行试销,经过市场调查,得出每天销售量y(件)是每件售价x(元)(x为正整数)的一次函数,其部分对应数据如下表所示:
每件售价x(元)
…
15
16
17
18
…
每天销售量y(件)
…
150
140
130
120
…
(1)求y关于x的函数解析式;
(2)若用w(元)表示工艺品厂试销该工艺品每天获得的利润,试求w关于x的函数解析式;
(3)该工艺品每件售价为多少元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是多少元?
【解答】解:(1)设y=kx+b,
由表可知:当x=15时,y=150,当x=16时,y=140,
则,解得:,
∴y关于x的函数解析式为:y=﹣10x+300;
(2)由题意可得:
w=(﹣10x+300)(x﹣11)=﹣10x2+410x﹣3300,
∴w关于x的函数解析式为:w=﹣10x2+410x﹣3300;
(3)∵对称轴x==20.5,a=﹣10<0,x是整数,
∴x=20或21时,w有最大值,
当x=20或21时,代入,可得:w=900,
∴该工艺品每件售价为20元或21元时,工艺品厂试销该工艺品每天获得的利润最大,最大利润是900元.
27.(2020•丹东)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/件)
60
65
70
销售量y(件)
1400
1300
1200
(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)
(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?
(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
,
解得,,
即y与x之间的函数表达式是y=﹣20x+2600;
(2)(x﹣50)(﹣20x+2600)=24000,
解得,x1=70,x2=110,
∵尽量给客户优惠,
∴这种衬衫定价为70元;
(3)由题意可得,
w=(x﹣50)(﹣20x+2600)=﹣20(x﹣90)2+32000,
∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价,
∴50≤x,(x﹣50)÷50≤30%,
解得,50≤x≤65,
∴当x=65时,w取得最大值,此时w=19500,
答:售价定为65元可获得最大利润,最大利润是19500元.
28.(2020•营口)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).
(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;
(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?
【解答】解:(1)由题意得:y=80+20×,
∴y=﹣40x+880(16≤x≤22);
(2)设每天的销售利润为w元,则有:
w=(﹣40x+880)(x﹣16)
=﹣40(x﹣19)2+360,
∵a=﹣40<0,
∴二次函数图象开口向下,
∴当x=19时,w有最大值,最大值为360元.
答:当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为360元.
相关试卷
这是一份第5章二次函数解答题-中档题-【苏科版-中考真题】九年级数学上学期期末复习培优练习(江苏),共27页。试卷主要包含了图象的顶点在y轴右侧,三点,对称轴是直线x=1等内容,欢迎下载使用。
这是一份2022-2023九年级数学下册期末复习培优练习-第28章+锐角三角函数-解答题 中档题(辽宁中考),共35页。
这是一份2022-2023九年级数学上学期期末复习培优练习-第25章概率初步 解答题中档题(辽宁中考),共21页。