|试卷下载
终身会员
搜索
    上传资料 赚现金
    东省济宁市金乡县2022年中考二模数学试题含解析
    立即下载
    加入资料篮
    东省济宁市金乡县2022年中考二模数学试题含解析01
    东省济宁市金乡县2022年中考二模数学试题含解析02
    东省济宁市金乡县2022年中考二模数学试题含解析03
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    东省济宁市金乡县2022年中考二模数学试题含解析

    展开
    这是一份东省济宁市金乡县2022年中考二模数学试题含解析,共20页。试卷主要包含了已知等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    2.下列运算正确的是(  )
    A.a2•a3=a6 B.()﹣1=﹣2 C. =±4 D.|﹣6|=6
    3.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第(  )象限.
    A.一 B.二 C.三 D.四
    4.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是(  )

    A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD
    5.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M= y1=y2.
    下列判断: ①当x>2时,M=y2;
    ②当x<0时,x值越大,M值越大;
    ③使得M大于4的x值不存在;
    ④若M=2,则x=" 1" .
    其中正确的有

    A.1个 B.2个 C.3个 D.4个
    6.1cm2的电子屏上约有细菌135000个,135000用科学记数法表示为(  )
    A.0.135×106 B.1.35×105 C.13.5×104 D.135×103
    7.如果两圆只有两条公切线,那么这两圆的位置关系是( )
    A.内切 B.外切 C.相交 D.外离
    8.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )
    A.259×104 B.25.9×105 C.2.59×106 D.0.259×107
    9.如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是(  )

    A.50° B.60° C.70° D.80°
    10.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b1.其中正确的项有( )

    A.2个 B.3个 C.4个 D.5个
    二、填空题(共7小题,每小题3分,满分21分)
    11.抛物线y=(x﹣3)2+1的顶点坐标是____.
    12.已知数据x1,x2,…,xn的平均数是,则一组新数据x1+8,x2+8,…,xn+8的平均数是____.
    13.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)
    14.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.
    15.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.

    16.ABCD为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动,P、Q两点从出发开始到__________秒时,点P和点Q的距离是10 cm.

    17.阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=﹣1,那么(1+i)•(1﹣i)的平方根是_____.
    三、解答题(共7小题,满分69分)
    18.(10分)某农场要建一个长方形ABCD的养鸡场,鸡场的一边靠墙,(墙长25m)另外三边用木栏围成,木栏长40m.
    (1)若养鸡场面积为168m2,求鸡场垂直于墙的一边AB的长.
    (2)请问应怎样围才能使养鸡场面积最大?最大的面积是多少?

    19.(5分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
    20.(8分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=1.设点A的坐标为(4,4)则点C的坐标为   ;若点D的坐标为(4,n).
    ①求反比例函数y=的表达式;
    ②求经过C,D两点的直线所对应的函数解析式;在(2)的条件下,设点E是线段CD上的动点(不与点C,D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.

    21.(10分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.

    22.(10分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
    (1)若点A的坐标为(1,0).
    ①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
    ②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
    (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
    23.(12分).
    24.(14分)如图 1 所示是一辆直臂高空升降车正在进行外墙装饰作业.图 2 是其工作示意图,AC是可以伸缩的起重臂,其转动点 A 离地面 BD 的高度 AH 为 2 m.当起重臂 AC 长度为 8 m,张角∠HAC 为 118°时,求操作平台 C 离地面的高度.(果保留小数点后一位,参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、是轴对称图形,不是中心对称图形,故A不正确;
    B、既是轴对称图形,又是中心对称图形,故B正确;
    C、是轴对称图形,不是中心对称图形,故C不正确;
    D、既不是轴对称图形,也不是中心对称图形,故D不正确.
    故选B.
    【点睛】
    本题考查了轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.
    2、D
    【解析】
    运用正确的运算法则即可得出答案.
    【详解】
    A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.
    【点睛】
    本题考查了四则运算法则,熟悉掌握是解决本题的关键.
    3、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    4、D
    【解析】
    试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.
    考点:角平分线的性质;全等三角形的判定.
    5、B
    【解析】
    试题分析:∵当y1=y2时,即时,解得:x=0或x=2,
    ∴由函数图象可以得出当x>2时, y2>y1;当0<x<2时,y1>y2;当x<0时, y2>y1.∴①错误.
    ∵当x<0时, -直线的值都随x的增大而增大,
    ∴当x<0时,x值越大,M值越大.∴②正确.
    ∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;
    ∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;
    ∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).
    ∴使得M=2的x值是1或.∴④错误.
    综上所述,正确的有②③2个.故选B.
    6、B
    【解析】
    根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).
    【详解】
    解:135000用科学记数法表示为:1.35×1.
    故选B.
    【点睛】
    科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    7、C
    【解析】
    两圆内含时,无公切线;两圆内切时,只有一条公切线;两圆外离时,有4条公切线;两圆外切时,有3条公切线;两圆相交时,有2条公切线.
    【详解】
    根据两圆相交时才有2条公切线.
    故选C.
    【点睛】
    本题考查了圆与圆的位置关系.熟悉两圆的不同位置关系中的外公切线和内公切线的条数.
    8、C
    【解析】
    绝对值大于1的正数可以科学计数法,a×10n,即可得出答案.
    【详解】
    n由左边第一个不为0的数字前面的0的个数决定,所以此处n=6.
    【点睛】
    本题考查了科学计数法的运用,熟悉掌握是解决本题的关键.
    9、B
    【解析】
    试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.
    由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.
    考点:旋转的性质.
    10、B
    【解析】
    根据二次函数的图象与性质判断即可.
    【详解】
    ①由抛物线开口向上知: a>1; 抛物线与y轴的负半轴相交知c<1; 对称轴在y轴的右侧知:b>1;所以:abc<1,故①错误;
    ②对称轴为直线x=-1,,即b=2a,
    所以b-2a=1.故②错误;
    ③由抛物线的性质可知,当x=-1时,y有最小值,
    即a-b+c<(),
    即a﹣b<m(am+b)(m≠﹣1),
    故③正确;
    ④因为抛物线的对称轴为x=1, 且与x轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;
    ⑤由图像可得,当x=2时,y>1,
    即: 4a+2b+c>1,
    故⑤正确.
    故正确选项有③④⑤,
    故选B.
    【点睛】
    本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、 (3,1)
    【解析】
    分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.
    详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).
    点睛:主要考查了抛物线顶点式的运用.
    12、
    【解析】
    根据数据x1,x2,…,xn的平均数为=(x1+x2+…+xn),即可求出数据x1+1,x2+1,…,xn+1的平均数.
    【详解】
    数据x1+1,x2+1,…,xn+1的平均数=(x1+1+x2+1+…+xn+1)=(x1+x2+…+xn)+1=+1.
    故答案为+1.
    【点睛】
    本题考查了平均数的概念,平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.
    13、<
    【解析】
    先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.
    【详解】
    由二次函数y=x1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,
    ∵1<x1<1,3<x1<4,
    ∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,
    ∴y1<y1.
    故答案为<.
    14、直角三角形.
    【解析】
    根据题意,画出图形,用垂直平分线的性质解答.
    【详解】
    点O落在AB边上,
    连接CO,
    ∵OD是AC的垂直平分线,
    ∴OC=OA,
    同理OC=OB,
    ∴OA=OB=OC,
    ∴A、B、C都落在以O为圆心,以AB为直径的圆周上,
    ∴∠C是直角.
    ∴这个三角形是直角三角形.

    【点睛】
    本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.
    15、1
    【解析】
    根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.
    【详解】
    ∵DM垂直平分AC,
    ∴AD=CD,
    ∴∠DAC=∠C=28°,
    ∴∠ADB=∠C+∠DAC=28°+28°=56°,
    ∵AB=BD,
    ∴∠ADB=∠BAD=56°,
    在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.
    故答案为1.
    【点睛】
    本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.
    16、或
    【解析】
    作PH⊥CD,垂足为H,设运动时间为t秒,用t表示线段长,用勾股定理列方程求解.
    【详解】

    设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
    作PH⊥CD,垂足为H,
    则PH=AD=6,PQ=10,
    ∵DH=PA=3t,CQ=2t,
    ∴HQ=CD−DH−CQ=|16−5t|,
    由勾股定理,得
    解得
    即P,Q两点从出发经过1.6或4.8秒时,点P,Q间的距离是10cm.
    故答案为或.
    【点睛】
    考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键.
    17、2
    【解析】
    根据平方根的定义进行计算即可.
    【详解】
    .解:∵i2=﹣1,
    ∴(1+i)•(1﹣i)=1﹣i2=2,
    ∴(1+i)•(1﹣i)的平方根是±,
    故答案为±.
    【点睛】
    本题考查平方根以及实数的运算,解题关键掌握平方根的定义.

    三、解答题(共7小题,满分69分)
    18、(1)鸡场垂直于墙的一边AB的长为2米;(1)鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
    【解析】
    试题分析:(1)首先设鸡场垂直于墙的一边AB的长为x 米,然后根据题意可得方程x(40-1x)=168,即可求得x的值,又由墙长15m,可得x=2,则问题得解;
    (1)设围成养鸡场面积为S,由题意可得S与x的函数关系式,由二次函数最大值的求解方法即可求得答案;
    解:(1)设鸡场垂直于墙的一边AB的长为x米,
    则 x(40﹣1x)=168,
    整理得:x1﹣10x+84=0,
    解得:x1=2,x1=6,
    ∵墙长15m,
    ∴0≤BC≤15,即0≤40﹣1x≤15,
    解得:7.5≤x≤10,
    ∴x=2.
    答:鸡场垂直于墙的一边AB的长为2米.
    (1)围成养鸡场面积为S米1,
    则S=x(40﹣1x)
    =﹣1x1+40x
    =﹣1(x1﹣10x)
    =﹣1(x1﹣10x+101)+1×101
    =﹣1(x﹣10)1+100,
    ∵﹣1(x﹣10)1≤0,
    ∴当x=10时,S有最大值100.
    即鸡场垂直于墙的一边AB的长为10米时,围成养鸡场面积最大,最大值100米1.
    点睛:此题考查了一元二次方程与二次函数的实际应用.解题的关键是理解题意,并根据题意列出一元二次方程与二次函数解析式.
    19、 (1)证明见解析;(2)当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【解析】
    (1)根据题意只需要证明a2+b2=c2,即可解答
    (2)根据题意将n=5代入得到a= (m2﹣52),b=5m,c= (m2+25),再将直角三角形的一边长为37,分别分三种情况代入a= (m2﹣52),b=5m,c= (m2+25),即可解答
    【详解】
    (1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,
    c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,
    ∴a2+b2=c2,
    ∵n为正整数,
    ∴a、b、c是一组勾股数;
    (2)解:∵n=5
    ∴a= (m2﹣52),b=5m,c= (m2+25),
    ∵直角三角形的一边长为37,
    ∴分三种情况讨论,
    ①当a=37时, (m2﹣52)=37,
    解得m=±3 (不合题意,舍去)
    ②当y=37时,5m=37,
    解得m= (不合题意舍去);
    ③当z=37时,37= (m2+n2),
    解得m=±7,
    ∵m>n>0,m、n是互质的奇数,
    ∴m=7,
    把m=7代入①②得,x=12,y=1.
    综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,1.
    【点睛】
    此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键
    20、 (1)C(2,2);(2)①反比例函数解析式为y=;②直线CD的解析式为y=﹣x+1;(1)m=1时,S△OEF最大,最大值为.
    【解析】
    (1)利用中点坐标公式即可得出结论;
    (2)①先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;
    ②由n=1,求出点C,D坐标,利用待定系数法即可得出结论;
    (1)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.
    【详解】
    (1)∵点C是OA的中点,A(4,4),O(0,0),
    ∴C,
    ∴C(2,2);
    故答案为(2,2);
    (2)①∵AD=1,D(4,n),
    ∴A(4,n+1),
    ∵点C是OA的中点,
    ∴C(2,),
    ∵点C,D(4,n)在双曲线上,
    ∴,
    ∴,
    ∴反比例函数解析式为;
    ②由①知,n=1,
    ∴C(2,2),D(4,1),
    设直线CD的解析式为y=ax+b,
    ∴,
    ∴,
    ∴直线CD的解析式为y=﹣x+1;
    (1)如图,由(2)知,直线CD的解析式为y=﹣x+1,

    设点E(m,﹣m+1),
    由(2)知,C(2,2),D(4,1),
    ∴2<m<4,
    ∵EF∥y轴交双曲线于F,
    ∴F(m,),
    ∴EF=﹣m+1﹣,
    ∴S△OEF=(﹣m+1﹣)×m=(﹣m2+1m﹣4)=﹣(m﹣1)2+,
    ∵2<m<4,
    ∴m=1时,S△OEF最大,最大值为

    【点睛】
    此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.
    21、(1)详见解析;(2)详见解析.
    【解析】
    (1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
    (2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
    【详解】
    解:(1)如图,及为所求.

    (2)连接.
    ∵是的切线,
    ∴,
    ∴,
    即,
    ∵是直径,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,

    ∴∽

    ∴.
    【点睛】
    本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
    22、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
    【解析】
    试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
    ②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
    (2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
    试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
    (x﹣h)2﹣2=0,解得:h=3或h=﹣1,
    ∵点A在点B的左侧,∴h>0,∴h=3,
    ∴抛物线l的表达式为:y=(x﹣3)2﹣2,
    ∴抛物线的对称轴是:直线x=3,
    由对称性得:B(5,0),
    由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
    ②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
    由对称性得:DF=PD,
    ∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
    ∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
    设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
    ∵点F、Q在抛物线l上,
    ∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
    ∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
    解得:a=或a=0(舍),∴P(,);

    (2)当y=0时,(x﹣h)2﹣2=0,
    解得:x=h+2或h﹣2,
    ∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
    如图3,作抛物线的对称轴交抛物线于点C,
    分两种情况:
    ①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
    则,∴3≤h≤4,
    ②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
    即:h+2≤2,h≤0,
    综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.

    考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.
    23、5﹣.
    【解析】
    根据特殊角的三角函数值进行计算即可.
    【详解】
    原式=
    =3﹣+4﹣2
    =5﹣.
    【点睛】
    本题考查了特殊角的三角函数值,是基础题目比较简单.
    24、5.8
    【解析】
    过点作于点,过点作于点,易得四边形为矩形,则,再计算出,在中,利用正弦可计算出CF的长度,然后计算CF+EF即可.
    【详解】
    解:如图,过点作于点,过点作于点,


    又,

    ∴四边形为矩形.


    在中,



    答:操作平台离地面的高度约为.
    【点睛】
    本题考查了解直角三角形的应用,先将实际问题抽象为数学问题,然后利用勾股定理和锐角三角函数的定义进行计算.

    相关试卷

    2024年山东省济宁市金乡县中考数学三模试卷(含解析): 这是一份2024年山东省济宁市金乡县中考数学三模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省济宁市金乡县中考数学一模试卷(含解析): 这是一份2023年山东省济宁市金乡县中考数学一模试卷(含解析),共21页。试卷主要包含了 分解因式等内容,欢迎下载使用。

    2023年山东省济宁市金乡县中考数学三模试卷(含解析): 这是一份2023年山东省济宁市金乡县中考数学三模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map