终身会员
搜索
    上传资料 赚现金

    2022年浙江省温州市文成县平和中学中考数学仿真试卷含解析

    立即下载
    加入资料篮
    2022年浙江省温州市文成县平和中学中考数学仿真试卷含解析第1页
    2022年浙江省温州市文成县平和中学中考数学仿真试卷含解析第2页
    2022年浙江省温州市文成县平和中学中考数学仿真试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年浙江省温州市文成县平和中学中考数学仿真试卷含解析

    展开

    这是一份2022年浙江省温州市文成县平和中学中考数学仿真试卷含解析,共21页。试卷主要包含了计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为(   )

    A.35° B.45° C.55° D.65°
    2.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
    ①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
    ,其中正确的结论

    A.只有①②. B.只有①③. C.只有②③. D.①②③.
    3.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为(  )
    A.﹣=10 B.﹣=10
    C.﹣=10 D. +=10
    4.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是(  )
    A.若这5次成绩的中位数为8,则x=8
    B.若这5次成绩的众数是8,则x=8
    C.若这5次成绩的方差为8,则x=8
    D.若这5次成绩的平均成绩是8,则x=8
    5.下列运算正确的是( )
    A. B. C. D.
    6.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为(  )

    A. B. C. D.
    7.在0.3,﹣3,0,﹣这四个数中,最大的是(  )
    A.0.3 B.﹣3 C.0 D.﹣
    8.计算:的结果是( )
    A. B.. C. D.
    9.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是(     )

    A.16cm B.18cm C.20cm D.21cm
    10.人的头发直径约为0.00007m,这个数据用科学记数法表示(  )
    A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105
    11.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为(  )

    A.80° B.90° C.100° D.120°
    12.关于的方程有实数根,则整数的最大值是( )
    A.6 B.7 C.8 D.9
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.

    14.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
    15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.
    16.已知反比例函数的图像经过点(-2017,2018),当时,函数值y随自变量x的值增大而_________.(填“增大”或“减小”)
    17.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.
    18.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=___________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知等边△ABC,AB=4,以AB为直径的半圆与BC边交于点D,过点D作DE⊥AC,垂足为E,过点E作EF⊥AB,垂足为F,连接FD.
    (1)求证:DE是⊙O的切线;
    (2)求EF的长.

    20.(6分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
    本数(本)
    频数(人数)
    频率
    5

    0.2
    6
    18
    0.36
    7
    14

    8
    8
    0.16
    合计

    1
    (1)统计表中的________,________,________;请将频数分布表直方图补充完整;求所有被调查学生课外阅读的平均本数;若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.

    21.(6分)计算:
    (1)
    (2)
    22.(8分)(1)解方程:=0;
    (2)解不等式组 ,并把所得解集表示在数轴上.
    23.(8分)某商场销售一批名牌衬衫,平均每天可以销售20件,每件盈利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天多售出2件,若商场平均每天要盈利1200元,每件衬衫应降价多少元?
    24.(10分)在平面直角坐标系xOy中,将抛物线(m≠0)向右平移个单位长度后得到抛物线G2,点A是抛物线G2的顶点.
    (1)直接写出点A的坐标;
    (2)过点(0,)且平行于x轴的直线l与抛物线G2交于B,C两点.
    ①当∠BAC=90°时.求抛物线G2的表达式;
    ②若60°<∠BAC<120°,直接写出m的取值范围.
    25.(10分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.
    求证:BF=AG.

    26.(12分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
    (1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
    (2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
    ①求证:BE′+BF=2,
    ②求出四边形OE′BF的面积.

    27.(12分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
    (2)解方程:x(x﹣4)=2x﹣8



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得.
    详解:∵∠ADC=35°,∠ADC与∠B所对的弧相同,
    ∴∠B=∠ADC=35°,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠CAB=90°-∠B=55°,
    故选C.
    点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识.
    2、D
    【解析】
    解:①∵ABCD为菱形,∴AB=AD.

    ∵AB=BD,∴△ABD为等边三角形.
    ∴∠A=∠BDF=60°.
    又∵AE=DF,AD=BD,
    ∴△AED≌△DFB;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
    即∠BGD+∠BCD=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
    ∴∠BGC=∠DGC=60°.
    过点C作CM⊥GB于M,CN⊥GD于N.
    ∴CM=CN,
    则△CBM≌△CDN,(HL)
    ∴S四边形BCDG=S四边形CMGN.
    S四边形CMGN=1S△CMG,
    ∵∠CGM=60°,
    ∴GM=CG,CM=CG,
    ∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.

    ③过点F作FP∥AE于P点.
    ∵AF=1FD,
    ∴FP:AE=DF:DA=1:3,
    ∵AE=DF,AB=AD,
    ∴BE=1AE,
    ∴FP:BE=1:6=FG:BG,
    即 BG=6GF.
    故选D.
    3、A
    【解析】
    根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.
    【详解】
    设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,
    根据题意列方程为:.
    故选:.
    【点睛】
    此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.
    4、D
    【解析】
    根据中位数的定义判断A;根据众数的定义判断B;根据方差的定义判断C;根据平均数的定义判断D.
    【详解】
    A、若这5次成绩的中位数为8,则x为任意实数,故本选项错误;
    B、若这5次成绩的众数是8,则x为不是7与9的任意实数,故本选项错误;
    C、如果x=8,则平均数为(8+9+7+8+8)=8,方差为 [3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本选项错误;
    D、若这5次成绩的平均成绩是8,则(8+9+7+8+x)=8,解得x=8,故本选项正确;
    故选D.
    【点睛】
    本题考查中位数、众数、平均数和方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    5、D
    【解析】
    根据幂的乘方:底数不变,指数相乘.合并同类项即可解答.
    【详解】
    解:A、B两项不是同类项,所以不能合并,故A、B错误,
    C、D考查幂的乘方运算,底数不变,指数相乘. ,故D正确;
    【点睛】
    本题考查幂的乘方和合并同类项,熟练掌握运算法则是解题的关键.
    6、B
    【解析】
    根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中 cos∠BCD=,可得BC=.
    故选B.
    点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.
    7、A
    【解析】
    根据正数大于0,0大于负数,正数大于负数,比较即可
    【详解】
    ∵-3<-<0<0.3
    ∴最大为0.3
    故选A.
    【点睛】
    本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
    8、B
    【解析】
    根据分式的运算法则即可求出答案.
    【详解】
    解:原式=
    =
    =
    故选;B
    【点睛】
    本题考查分式的运算法则,解题关键是熟练运用分式的运算法则,本题属于基础题型.
    9、C
    【解析】
    试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.
    考点:平移的性质.
    10、B
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:0.00007m,这个数据用科学记数法表示7×10﹣1.
    故选:B.
    【点睛】
    本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    11、B
    【解析】
    根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
    【详解】
    解:∵将△ABC绕点A顺时针旋转得到△ADE,
    ∴△ABC≌△ADE,
    ∴∠B=∠D,
    ∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
    ∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
    ∴∠CFD=∠B+∠BEF=90°,
    故选:B.
    【点睛】
    本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
    12、C
    【解析】
    方程有实数根,应分方程是一元二次方程与不是一元二次方程,两种情况进行讨论,当不是一元二次方程时,a-6=0,即a=6;当是一元二次方程时,有实数根,则△≥0,求出a的取值范围,取最大整数即可.
    【详解】
    当a-6=0,即a=6时,方程是-1x+6=0,解得x=;
    当a-6≠0,即a≠6时,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
    取最大整数,即a=1.
    故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2或
    【解析】
    分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
    (2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
    【详解】
    解:(1)当时,

    ∵垂直平分,
    .

    (2)当时,过点A作于点,


    在与中,




    .

    故答案为或.
    【点睛】
    本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.
    14、﹣1
    【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
    【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
    整理得k2+1k=0,解得k1=0,k2=﹣1,
    因为k≠0,
    所以k的值为﹣1.
    故答案为:﹣1.
    【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    15、1.
    【解析】
    试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.
    ∴斜边上的中线长=×10=1.
    考点:1.勾股定理;2. 直角三角形斜边上的中线性质.
    16、增大
    【解析】
    根据题意,利用待定系数法解出系数的符号,再根据k值的正负确定函数值的增减性.
    【详解】
    ∵反比例函数的图像经过点(-2017,2018),
    ∴k=-2017×20180时,y随x的增大而增大.
    故答案为增大.
    17、1
    【解析】
    试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.
    ∵正多边形的一个内角是140°,
    ∴它的外角是:180°-140°=40°,
    360°÷40°=1.
    故答案为1.
    考点:多边形内角与外角.
    18、-1.
    【解析】
    解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案为-1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)见解析;(2) .
    【解析】
    (1)连接OD,根据切线的判定方法即可求出答案;
    (2)由于OD∥AC,点O是AB的中点,从而可知OD为△ABC的中位线,在Rt△CDE中,∠C=60°,CE=CD=1,所以AE=AC−CE=4−1=3,在Rt△AEF中,所以EF=AE•sinA=3×sin60°=.
    【详解】
    (1)连接OD,

    ∵△ABC是等边三角形,
    ∴∠C=∠A=∠B=60°,
    ∵OD=OB,
    ∴△ODB是等边三角形,
    ∴∠ODB=60°
    ∴∠ODB=∠C,
    ∴OD∥AC,
    ∴DE⊥AC
    ∴OD⊥DE,
    ∴DE是⊙O的切线
    (2)∵OD∥AC,点O是AB的中点,
    ∴OD为△ABC的中位线,
    ∴BD=CD=2
    在Rt△CDE中,
    ∠C=60°,
    ∴∠CDE=30°,
    ∴CE=CD=1
    ∴AE=AC﹣CE=4﹣1=3
    在Rt△AEF中,
    ∠A=60°,
    ∴EF=AE•sinA=3×sin60°=
    【点睛】
    本题考查圆的综合问题,涉及切线的判定,锐角三角函数,含30度角的直角三角形的性质,等边三角形的性质,本题属于中等题型.
    20、(1)10,0.28,50(2)图形见解析(3)6.4(4)528
    【解析】
    分析:(1)首先求出总人数,再根据频率,总数,频数的关系即可解决问题;
    (2)根据a的值画出条形图即可;
    (3)根据平均数的定义计算即可;
    (4)用样本估计总体的思想解决问题即可;
    详解:(1)由题意c==50,
    a=50×0.2=10,b==0.28,c=50;
    故答案为10,0.28,50;
    (2)将频数分布表直方图补充完整,如图所示:

    (3)所有被调查学生课外阅读的平均本数为:
    (5×10+6×18+7×14+8×8)÷50=320÷50=6.4(本).
    (4)该校七年级学生课外阅读7本及以上的人数为:
    (0.28+0.16)×1200=528(人).
    点睛:本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.
    21、(1);(2)1.
    【解析】
    (1)根据二次根式的混合运算法则即可;
    (2)根据特殊角的三角函数值即可计算.
    【详解】
    解:(1)原式=


    (2)原式


    【点睛】
    本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.
    22、(1)x=;(2)x>3;数轴见解析;
    【解析】
    (1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;
    (2)先求出每个不等式的解集,再求出不等式组的解集即可.
    【详解】
    解:(1)方程两边都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,
    解得:
    检验:当时,(1﹣2x)(x+2)≠0,所以是原方程的解,
    所以原方程的解是;
    (2) ,
    ∵解不等式①得:x>1,
    解不等式②得:x>3,
    ∴不等式组的解集为x>3,
    在数轴上表示为:.
    【点睛】
    本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键.
    23、每件衬衫应降价1元.
    【解析】
    利用衬衣平均每天售出的件数×每件盈利=每天销售这种衬衣利润列出方程解答即可.
    【详解】
    解:设每件衬衫应降价x元.
    根据题意,得 (40-x)(1+2x)=110,
    整理,得x2-30x+10=0,
    解得x1=10,x2=1.
    ∵“扩大销售量,减少库存”,
    ∴x1=10应舍去,
    ∴x=1.
    答:每件衬衫应降价1元.
    【点睛】
    此题主要考查了一元二次方程的应用,利用基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润是解题关键.
    24、(1)(,2);(2)①y=(x-)2+2;②
    【解析】
    (1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;
    (2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出BD=AD=,从而求出点B的坐标,代入即可得解;
    ②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.
    【详解】
    (1)∵将抛物线G1:y=mx2+2(m≠0)向右平移个单位长度后得到抛物线G2,
    ∴抛物线G2:y=m(x-)2+2,
    ∵点A是抛物线G2的顶点.
    ∴点A的坐标为(,2).
    (2)①设抛物线对称轴与直线l交于点D,如图1所示.
    ∵点A是抛物线顶点,
    ∴AB=AC.
    ∵∠BAC=90°,
    ∴△ABC为等腰直角三角形,
    ∴CD=AD=,
    ∴点C的坐标为(2,).
    ∵点C在抛物线G2上,
    ∴=m(2-)2+2,
    解得:.
    ②依照题意画出图形,如图2所示.
    同理:当∠BAC=60°时,点C的坐标为(+1,);
    当∠BAC=120°时,点C的坐标为(+3,).
    ∵60°<∠BAC<120°,
    ∴点(+1,)在抛物线G2下方,点(+3,)在抛物线G2上方,
    ∴,
    解得:.


    【点睛】
    此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.
    25、见解析
    【解析】
    根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.
    【详解】
    证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,
    又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,
    又∵∠BAC=90°,AE⊥CD,
    ∴∠BAF+∠ADE=90°,∠ACG +∠ADE=90°,
    ∴∠BAF=∠ACG. 又∵AB=CA,

    ∴△ABF≌△CAG(ASA),
    ∴BF=AG
    【点睛】
    此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.
    26、 (1);(2)①2,②
    【解析】
    分析:(1)重合部分是等边三角形,计算出边长即可.
    ①证明:在图3中,取AB中点E,证明≌,即可得到
    ,
    ②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.
    详解:(1)∵四边形为菱形,

    ∴为等边三角形

    ∵AD//

    ∴为等边三角形,边长
    ∴重合部分的面积:
    ①证明:在图3中,取AB中点E,

    由上题知,

    又∵
    ∴≌,

    ∴,
    ②由①知,在旋转过程60°中始终有≌
    ∴四边形的面积等于=.
    点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.
    27、(1)3;(1)x1=4,x1=1.
    【解析】
    (1)根据有理数的混合运算法则计算即可;
    (1)先移项,再提取公因式求解即可.
    【详解】
    解:(1)原式=8×(﹣)﹣4×+1
    =8×﹣1+1
    =3;
    (1)移项得:x(x﹣4)﹣1(x﹣4)=0,
    (x﹣4)(x﹣1)=0,
    x﹣4=0,x﹣1=0,
    x1=4,x1=1.
    【点睛】
    本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.

    相关试卷

    2024年浙江省温州市文成县中考数学二模试卷:

    这是一份2024年浙江省温州市文成县中考数学二模试卷,文件包含2024二模数学参考答案docx、2024年温州文成县数学二模pdf等2份试卷配套教学资源,其中试卷共9页, 欢迎下载使用。

    2022-2023学年浙江省温州市文成县七年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年浙江省温州市文成县七年级(下)期中数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年浙江省温州市文成县八年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年浙江省温州市文成县八年级(下)期中数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map