


2022届四川省成都市盐道街中学中考数学仿真试卷含解析
展开这是一份2022届四川省成都市盐道街中学中考数学仿真试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,已知函数的图象与x轴有交点等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是( )
A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
2.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21 B.21或27 C.27 D.25
3. “嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为
A. B. C. D.
4.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )
A.AB=AD B.AC平分∠BCD
C.AB=BD D.△BEC≌△DEC
5.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为( )
A.2 B.3 C.4 D.5
6.如图图形中,可以看作中心对称图形的是( )
A. B. C. D.
7.下列因式分解正确的是
A. B.
C. D.
8.不解方程,判别方程2x2﹣3x=3的根的情况( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.有一个实数根 D.无实数根
9.已知函数的图象与x轴有交点.则的取值范围是( )
A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
10.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )
A.204×103 B.20.4×104 C.2.04×105 D.2.04×106
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O到点O′所经过的路径长为_____.
12.如图,某海监船以20km/h的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为_____km.
13.分解因式:________.
14.同一个圆的内接正方形和正三角形的边心距的比为_____.
15.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.
16.某航班每次飞行约有111名乘客,若飞机失事的概率为p=1.111 15,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿41万元人民币. 平均来说,保险公司应向每位乘客至少收取_____元保险费才能保证不亏本.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
18.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.
(1)求抛物线的解析式;
(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
19.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
20.(8分)计算: .
21.(8分)如图,一次函数的图象与反比例函数的图象交于,B 两点.
(1)求一次函数与反比例函数的解析式;
(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.
22.(10分)解方程:.
23.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.
①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?
②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
24.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD,过D作AC的垂线,交AC边于点E,交AB 边的延长线于点F.
(1)求证:EF是⊙O的切线;
(2)若∠F=30°,BF=3,求弧AD的长.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、A
【解析】
根据三角形中位线定理判断即可.
【详解】
∵AD为△ABC的中线,点E为AC边的中点,
∴DC=BC,DE=AB,
∵BC不一定等于AB,
∴DC不一定等于DE,A不一定成立;
∴AB=2DE,B一定成立;
S△CDE=S△ABC,C一定成立;
DE∥AB,D一定成立;
故选A.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
2、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
3、C
【解析】
分析:一个绝对值大于10的数可以表示为的形式,其中为整数.确定的值时,整数位数减去1即可.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
详解:1800000这个数用科学记数法可以表示为
故选C.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
4、C
【解析】
解:∵AC垂直平分BD,∴AB=AD,BC=CD,
∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.
在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,
∴Rt△BCE≌Rt△DCE(HL).
∴选项ABD都一定成立.
故选C.
5、C
【解析】
若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,
即一共添加4个小正方体,
故选C.
6、D
【解析】
根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.
【详解】
解:A、不是中心对称图形,故此选项不合题意;
B、不是中心对称图形,故此选项不合题意;
C、不是中心对称图形,故此选项不合题意;
D、是中心对称图形,故此选项符合题意;
故选D.
【点睛】
此题主要考查了中心对称图形,关键掌握中心对称图形定义.
7、D
【解析】
直接利用提取公因式法以及公式法分解因式,进而判断即可.
【详解】
解:A、,无法直接分解因式,故此选项错误;
B、,无法直接分解因式,故此选项错误;
C、,无法直接分解因式,故此选项错误;
D、,正确.
故选:D.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
8、B
【解析】
一元二次方程的根的情况与根的判别式有关,
,方程有两个不相等的实数根,故选B
9、B
【解析】
试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.
考点:函数图像与x轴交点的特点.
10、C
【解析】试题分析:204000米/分,这个数用科学记数法表示2.04×105,故选C.
考点:科学记数法—表示较大的数.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.
【详解】
解:∵扇形OAB的圆心角为30°,半径为1,
∴AB弧长=
∴点O到点O′所经过的路径长=
故答案为:
【点睛】
本题考查了弧长公式:.也考查了旋转的性质和圆的性质.
12、40
【解析】
首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题.
【详解】
解:在Rt△PAB中,∵∠APB=30°,
∴PB=2AB,
由题意BC=2AB,
∴PB=BC,
∴∠C=∠CPB,
∵∠ABP=∠C+∠CPB=60°,
∴∠C=30°,
∴PC=2PA,
∵PA=AB•tan60°,
∴PC=2×20×=40(km),
故答案为40.
【点睛】
本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.
13、 (a+1)(a-1)
【解析】
根据平方差公式分解即可.
【详解】
(a+1)(a-1).
故答案为:(a+1)(a-1).
【点睛】
本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
14、
【解析】
先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.
【详解】
设⊙O的半径为r,⊙O的内接正方形ABCD,如图,
过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
∴O为正方形ABCD的中心,
∴∠BOC=90°,
∵OQ⊥BC,OB=CO,
∴QC=BQ,∠COQ=∠BOQ=45°,
∴OQ=OC×cos45°=R;
设⊙O的内接正△EFG,如图,
过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
∵正△EFG是⊙O的外接圆,
∴∠OGF=∠EGF=30°,
∴OH=OG×sin30°=R,
∴OQ:OH=(R):(R)=:1,
故答案为:1.
【点睛】
本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.
15、
【解析】
连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有: 解直角即可.
【详解】
连接OC,OD,OC与AD交于点E,
直尺的宽度:
故答案为
【点睛】
考查垂径定理,熟记垂径定理是解题的关键.
16、21
【解析】
每次约有111名乘客,如飞机一旦失事,每位乘客赔偿41万人民币,共计4111万元,由题意可得一次飞行中飞机失事的概率为P=1.11115,所以赔偿的钱数为41111111×1.11115=2111元,即可得至少应该收取保险费每人 =21元.
三、解答题(共8题,共72分)
17、(1)AD2=AC•CD.(2)36°.
【解析】
试题分析:(1)通过计算得到=,再计算AC·CD,比较即可得到结论;
(2)由,得到,即,从而得到△ABC∽△BDC,故有,从而得到BD=BC=AD,故∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=2x,∠ABC=∠C=∠BDC=2x,由三角形内角和等于180°,解得:x=36°,从而得到结论.
试题解析:(1)∵AD=BC=,∴==.
∵AC=1,∴CD==,∴;
(2)∵,∴,即,又∵∠C=∠C,∴△ABC∽△BDC,∴,又∵AB=AC,∴BD=BC=AD,∴∠A=∠ABD,∠ABC=∠C=∠BDC.
设∠A=∠ABD=x,则∠BDC=∠A+∠ABD=2x,∴∠ABC=∠C=∠BDC=2x,∴∠A+∠ABC+∠C=x+2x+2x=180°,解得:x=36°,∴∠ABD=36°.
考点:相似三角形的判定与性质.
18、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).
【解析】
(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;
(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;
(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.
【详解】
解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,
∴抛物线与x轴的交点B的坐标为(1,0),
设抛物线解析式为y=a(x+3)(x﹣1),
将点C(0,﹣3)代入,得:﹣3a=﹣3,
解得a=1,
则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;
(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.
∵S△POC=2S△BOC,
∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.
当a=2时,点P的坐标为(2,21);
当a=﹣2时,点P的坐标为(﹣2,5).
∴点P的坐标为(2,21)或(﹣2,5).
(3)如图所示:
设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,
∴直线AC的解析式为y=﹣x﹣3.
设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).
∴QD=﹣x﹣3﹣( x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,
∴当x=﹣时,QD有最大值,QD的最大值为.
【点睛】
本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.
19、(1)150,(2)36°,(3)1.
【解析】
(1)根据图中信息列式计算即可;
(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;
(3)360°×乒乓球”所占的百分比即可得到结论;
(4)根据题意计算即可.
【详解】
(1)m=21÷14%=150,
(2)“足球“的人数=150×20%=30人,
补全上面的条形统计图如图所示;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
(4)1200×20%=1人,
答:估计该校约有1名学生最喜爱足球活动.
故答案为150,36°,1.
【点睛】
本题考查了条形统计图,观察条形统计图、扇形统计图获得有效信息是解题关键.
20、10
【解析】
【分析】先分别进行0次幂的计算、负指数幂的计算、二次根式以及绝对值的化简、特殊角的三角函数值,然后再按运算顺序进行计算即可.
【详解】原式=1+9-+4
=10-+
=10.
【点睛】本题考查了实数的混合运算,涉及到0指数幂、负指数幂、特殊角的三角函数值等,熟练掌握各运算的运算法则是解题的关键.
21、(1);;(2)或;
【解析】
(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;
(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.
【详解】
(1) 过点,
,
反比例函数的解析式为;
点在 上,
,
,
一次函数过点,
,
解得:.
一次函数解析式为;
(2)由图可知,当或时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.
22、
【解析】
分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.
详解:去分母,得.
去括号,得.
移项,得 .
合并同类项,得 .
系数化为1,得.
经检验,原方程的解为.
点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.
23、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.
【解析】
【分析】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,由条件可列方程组,则可求得答案;
(2)①设购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,由条件可得到关于m的不等式组,则可求得m的取值范围,且m为整数,则可求得m的值,即可求得进货方案;
②用m可表示出W,可得到关于m的一次函数,利用一次函数的性质可求得答案.
【详解】(1)设甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
根据题意可得,解得,
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;
(2)①若购进甲种羽毛球m筒,则乙种羽毛球为(200﹣m)筒,
根据题意可得 ,解得75<m≤78,
∵m为整数,
∴m的值为76、77、78,
∴进货方案有3种,分别为:
方案一,购进甲种羽毛球76筒,乙种羽毛球为124筒,
方案二,购进甲种羽毛球77筒,乙种羽毛球为123筒,
方案一,购进甲种羽毛球78筒,乙种羽毛球为122筒;
②根据题意可得W=(60﹣50)m+(45﹣40)(200﹣m)=5m+1000,
∵5>0,
∴W随m的增大而增大,且75<m≤78,
∴当m=78时,W最大,W最大值为1390,
答:当m=78时,所获利润最大,最大利润为1390元.
【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用,弄清题意找准等量关系列出方程组、找准不等关系列出不等式组、找准各量之间的数量关系列出函数解析式是解题的关键.
24、(1)见解析;(2)2π.
【解析】
证明:(1)连接OD,
∵AB是直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴AD平分∠BAC,
∴∠OAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,
∴OD⊥EF,
∵OD过O,
∴EF是⊙O的切线.
(2)∵OD⊥DF,
∴∠ODF=90°,
∵∠F=30°,
∴OF=2OD,即OB+3=2OD,
而OB=OD,
∴OD=3,
∵∠AOD=90°+∠F=90°+30°=120°,
∴的长度=.
【点睛】
本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了弧长公式.
相关试卷
这是一份2024年四川省成都市盐道街中学九年级中考三模数学试题(无答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年四川省成都市盐道街中学九年级中考三模数学试题,共4页。
这是一份2022-2023学年四川省成都市锦江区盐道街中学九年级(上)期中数学试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。