


2021钦州高二下学期期末考试数学(理)试题扫描版含答案
展开这是一份2021钦州高二下学期期末考试数学(理)试题扫描版含答案,共8页。
钦州市2021年春季学期教学质量监测参考答案
高二 数 学(理科)
一、选择题答案:(每小题5分,共60分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
答案 | D | A | D | C | B | B | C | C | C | A | A | D |
二、填空题答案:(每小题5分,共20分)
13. ; 14.; 15.142; 16.
三、解答题:本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.解:(1)定义域R,
,令,解得,····················································3分
当时,,所以在上单调递增,
当时,,在上单调递减.
当时,,在上单调递增
综上,的单调增区间为,单调减区间为上单调递减;
····························································5分
(2)由(1)知,在上的最小值在或处取得, ····························7分
又,
函数在的最小值为 ···········································10分
18.解:(1)由频率分布直方图知,
由解得, ····················································· 3分
设总共调查了个人,则满意的为,解得人.
不满意的频率为,所以共有人,
即不满意的人数为120人. ·········································· 6分
(2)评分等级为“不满意”的120名市民中按年龄分层抽取人,
则女生人数为人,男生人数为人, ·································· 8分
从6人中抽取3人,既有男生又有女生的取法为种.
所以该督导小组既有男生又有女生的概率为 ···························12分
19. 解:(1)因为:, ··············································2分
消去参数得.
曲线的普通方程为 ·············································4分
(2)将代入的普通方程为,
得,整理得.
··························································9分
又
.
弦长的值为 ················································ 12分
20解:(1)①当时,,所以,所以;
②当时,,所以,所以;
③当时,,所以,所以 ········································5分
综上,当时,不等式的解集为 ···································6分
(2)因为,
所以 ·······················································8分
又因为存在,使得成立,
所以,
解得:
故实数的取值范围为. ········································12分
21. 解:(1)根据题意,1000名患者中潜伏期超过6天的共有250+130+15+5=400人,
所以200人应该抽取潜伏期超过6天的有人, ··························2分
补充完整的列联表如下:
| 潜伏期天 | 潜伏期天 | 总计 |
50岁以上(含50岁) | 65 | 35 | 100 |
50岁以下 | 55 | 45 | 100 |
总计 | 120 | 80 | 200 |
则,
,
所以没有的把握认为潜伏期与患者年龄有关;····························6分
(2)由题可得该地区1名患者潜伏期不超过6天发生的概率为,
设调查的3名患者中潜伏期不超过6天的人数为, ························8分
则,
,,
由,即,
随机变量的分布列为:
0 | 1 | 2 | 3 | |
随机变量的期望为. ··········································· 12分
22. 解:(1)的定义域为,·············································1分
,令,解得
当时,,此时在单调递增,
当时,,此时在单调递减.
所以的极大值为,无极小值. ········································4分
(2)的定义域为,
,
①当在恒成立,
所以在单调递增,又因为,
不恒成立,所以不符合题意 ······································7分
②当令,解得
当时,,在单调递增,
当时,,在单调递减,
又因为.当且仅当满足恒成立. ·······································9分
③当令,解得当时,
,在单调递减,又因为.
所以不符合题意.
综上,函数恒成立,的值为1. ······································ 12分
相关试卷
这是一份2020钦州高二下学期期末数学(理)试题扫描版含答案
这是一份2021钦州高一下学期期末考试数学试题扫描版含答案,共8页。
这是一份2021钦州高二下学期期末考试数学(文)试题扫描版含答案,共8页。