终身会员
搜索
    上传资料 赚现金

    2022年安徽省利辛县重点达标名校中考数学押题卷含解析

    立即下载
    加入资料篮
    2022年安徽省利辛县重点达标名校中考数学押题卷含解析第1页
    2022年安徽省利辛县重点达标名校中考数学押题卷含解析第2页
    2022年安徽省利辛县重点达标名校中考数学押题卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年安徽省利辛县重点达标名校中考数学押题卷含解析

    展开

    这是一份2022年安徽省利辛县重点达标名校中考数学押题卷含解析,共22页。试卷主要包含了某市2017年国内生产总值,图为小明和小红两人的解题过程,若正比例函数y=mx,tan45°的值等于等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(共10小题,每小题3分,共30分)
    1.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:
    ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
    你认为其中正确信息的个数有

    A.2个 B.3个 C.4个 D.5个
    2.观察下列图形,其中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    3.对于反比例函数,下列说法不正确的是(  )
    A.点(﹣2,﹣1)在它的图象上 B.它的图象在第一、三象限
    C.当x>0时,y随x的增大而增大 D.当x<0时,y随x的增大而减小
    4.已知关于x,y的二元一次方程组的解为,则a﹣2b的值是(  )
    A.﹣2 B.2 C.3 D.﹣3
    5.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是( )
    A.3.1; B.4; C.2; D.6.1.
    6.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是( ).
    A. B. C. D.
    7.某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是( )
    A. B.
    C. D.
    8.图为小明和小红两人的解题过程.下列叙述正确的是( )
    计算:+

    A.只有小明的正确 B.只有小红的正确
    C.小明、小红都正确 D.小明、小红都不正确
    9.若正比例函数y=mx(m是常数,m≠0)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于(  )
    A.2 B.﹣2 C.4 D.﹣4
    10.tan45°的值等于(  )
    A. B. C. D.1
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某市居民用电价格如表所示:
    用电量
    不超过a千瓦时
    超过a千瓦时的部分
    单价(元/千瓦时)
    0.5
    0.6
    小芳家二月份用电200千瓦时,交电费105元,则a=______.
    12.已知|x|=3,y2=16,xy<0,则x﹣y=_____.
    13.如图,在平面直角坐标系中,⊙P的圆心在x轴上,且经过点A(m,﹣3)和点B(﹣1,n),点C是第一象限圆上的任意一点,且∠ACB=45°,则⊙P的圆心的坐标是_____.

    14.因式分解:_________________.
    15.如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_______.

    16.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)

    三、解答题(共8题,共72分)
    17.(8分)今年5月,某大型商业集团随机抽取所属的m家商业连锁店进行评估,将各连锁店按照评估成绩分成了A、B、C、D四个等级,绘制了如图尚不完整的统计图表.
    评估成绩n(分)

    评定等级

    频数

    90≤n≤100

    A

    2

    80≤n<90

    B



    70≤n<80

    C

    15

    n<70

    D

    6

    根据以上信息解答下列问题:
    (1)求m的值;
    (2)在扇形统计图中,求B等级所在扇形的圆心角的大小;(结果用度、分、秒表示)
    (3)从评估成绩不少于80分的连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.

    18.(8分)如图1,在平面直角坐标系中,一次函数y=﹣1x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.

    (1)线段AB,BC,AC的长分别为AB=   ,BC=   ,AC=   ;
    (1)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图1.
    请从下列A、B两题中任选一题作答,我选择   题.
    A:①求线段AD的长;
    ②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.
    B:①求线段DE的长;
    ②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    19.(8分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.
    填空:______;
    证明:;
    当四边形ABCD的面积和的面积相等时,求点P的坐标.

    20.(8分)关于x的一元二次方程x2+(m-1)x-(2m+3)=1.
    (1)求证:方程总有两个不相等的实数根;
    (2)写出一个m的值,并求出此时方程的根.
    21.(8分)计算:
    22.(10分)问题探究
    (1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为   ;
    (2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
    问题解决
    (3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.

    23.(12分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.
    24.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).
    根据上述信息,解答下列各题:
    ×
    (1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;
    (2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;
    (3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).
    统计量
    平均数(次)
    中位数(次)
    众数(次)
    方差

    该班级男生





    根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    试题分析:①如图,∵抛物线开口方向向下,∴a<1.
    ∵对称轴x,∴<1.∴ab>1.故①正确.
    ②如图,当x=1时,y<1,即a+b+c<1.故②正确.
    ③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.
    ④如图,当x=﹣1时,y>1,即a﹣b+c>1,
    ∵抛物线与y轴交于正半轴,∴c>1.
    ∵b<1,∴c﹣b>1.
    ∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.
    ⑤如图,对称轴,则.故⑤正确.
    综上所述,正确的结论是①②③④⑤,共5个.故选D.
    2、C
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;
    B、是轴对称图形,不是中心对称图形.故本选项错误;
    C、是轴对称图形,也是中心对称图形.故本选项正确;
    D、既不是轴对称图形,也不是中心对称图形.故本选项错误.
    故选C.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    3、C
    【解析】
    由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y随x的增大而减小,正确,
    故选C.
    考点:反比例函数
    【点睛】
    本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化
    4、B
    【解析】
    把代入方程组得:,
    解得:,
    所以a−2b=−2×()=2.
    故选B.
    5、A
    【解析】∵数据组2、x、8、1、1、2的众数是2,
    ∴x=2,
    ∴这组数据按从小到大排列为:2、2、2、1、1、8,
    ∴这组数据的中位数是:(2+1)÷2=3.1.
    故选A.
    6、C
    【解析】
    分析:本题可先列出出现的点数的情况,因为二次图象开口向上,要使图象与x轴有两个不同的交点,则最低点要小于0,即4n-m2<0,再把m、n的值一一代入检验,看是否满足.最后把满足的个数除以掷骰子可能出现的点数的总个数即可.
    解答:解:掷骰子有6×6=36种情况.
    根据题意有:4n-m2<0,
    因此满足的点有:n=1,m=3,4,5,6,
    n=2,m=3,4,5,6,
    n=3,m=4,5,6,
    n=4,m=5,6,
    n=5,m=5,6,
    n=6,m=5,6,
    共有17种,
    故概率为:17÷36=.
    故选C.
    点评:本题考查的是概率的公式和二次函数的图象问题.要注意画出图形再进行判断,找出满足条件的点.
    7、D
    【解析】
    分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.
    详解:设2016年的国内生产总值为1,
    ∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;
    ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),
    ∵这两年GDP年平均增长率为x%, ∴2018年的国内生产总值也可表示为:,
    ∴可列方程为:(1+12%)(1+7%)=.故选D.
    点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.
    8、D
    【解析】
    直接利用分式的加减运算法则计算得出答案.
    【详解】
    解:
    =﹣+
    =﹣+

    =,
    故小明、小红都不正确.
    故选:D.
    【点睛】
    此题主要考查了分式的加减运算,正确进行通分运算是解题关键.
    9、B
    【解析】
    利用待定系数法求出m,再结合函数的性质即可解决问题.
    【详解】
    解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),
    ∴m2=4,
    ∴m=±2,
    ∵y的值随x值的增大而减小,
    ∴m<0,
    ∴m=﹣2,
    故选:B.
    【点睛】
    本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    10、D
    【解析】
    根据特殊角三角函数值,可得答案.
    【详解】
    解:tan45°=1,
    故选D.
    【点睛】
    本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、150
    【解析】
    根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元;根据等量关系列出方程,解出a的值即可.
    【详解】
    ∵0.5×200=100<105,
    ∴a<200.
    由题意得:0.5a+0.6(200-a)=105,
    解得:a=150.
    故答案为:150
    【点睛】
    此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.
    12、±3
    【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.
    详解:因为|x|=1,所以x=±1.
    因为y2=16,所以y=±2.
    又因为xy<0,所以x、y异号,
    当x=1时,y=-2,所以x-y=3;
    当x=-1时,y=2,所以x-y=-3.
    故答案为:±3.
    点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.
    13、(2,0)
    【解析】
    【分析】作辅助线,构建三角形全等,先根据同弧所对的圆心角是圆周角的二倍得:∠APB=90°,再证明△BPE≌△PAF,根据PE=AF=3,列式可得结论.
    【详解】连接PB、PA,过B作BE⊥x轴于E,过A作AF⊥x轴于F,
    ∵A(m,﹣3)和点B(﹣1,n),
    ∴OE=1,AF=3,
    ∵∠ACB=45°,
    ∴∠APB=90°,
    ∴∠BPE+∠APF=90°,
    ∵∠BPE+∠EBP=90°,
    ∴∠APF=∠EBP,
    ∵∠BEP=∠AFP=90°,PA=PB,
    ∴△BPE≌△PAF,
    ∴PE=AF=3,
    设P(a,0),
    ∴a+1=3,
    a=2,
    ∴P(2,0),
    故答案为(2,0).

    【点睛】本题考查了圆周角定理和坐标与图形性质,三角形全等的性质和判定,作辅助线构建三角形全等是关键.
    14、
    【解析】
    提公因式法和应用公式法因式分解.
    【详解】
    解: .
    故答案为:
    【点睛】
    本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
    15、﹣1<x<1
    【解析】
    试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)
    ∴图象与x轴的另一个交点坐标为(-1,0)
    利用图象可知:
    ax2+bx+c<0的解集即是y<0的解集,
    ∴-1<x<1.
    考点:二次函数与不等式(组).
    16、①②③⑤
    【解析】
    根据图象可判断①②③④⑤,由x=1时,y<0,可判断⑥
    【详解】
    由图象可得,a>0,c<0,b<0,△=b2﹣4ac>0,对称轴为x=
    ∴abc>0,4ac<b2,当时,y随x的增大而减小.故①②⑤正确,

    ∴2a+b>0,
    故③正确,
    由图象可得顶点纵坐标小于﹣2,则④错误,
    当x=1时,y=a+b+c<0,故⑥错误
    故答案为:①②③⑤
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物
    线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.

    三、解答题(共8题,共72分)
    17、(1)25;(2)8°48′;(3).
    【解析】
    试题分析:(1)由C等级频数为15除以C等级所占的百分比60%,即可求得m的值;(2)首先求得B等级的频数,继而求得B等级所在扇形的圆心角的大小;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中至少有一家是A等级的情况,再利用概率公式求解即可求得答案.
    试题解析:(1)∵C等级频数为15,占60%,
    ∴m=15÷60%=25;
    (2)∵B等级频数为:25﹣2﹣15﹣6=2,
    ∴B等级所在扇形的圆心角的大小为:×360°=28.8°=28°48′;
    (3)评估成绩不少于80分的连锁店中,有两家等级为A,有两家等级为B,画树状图得:

    ∵共有12种等可能的结果,其中至少有一家是A等级的有10种情况,
    ∴其中至少有一家是A等级的概率为:=.
    考点:频数(率)分布表;扇形统计图;列表法与树状图法.
    18、(1)2,3,3;(1)①AD=5;②P(0,1)或(0,2).
    【解析】
    (1)先确定出OA=3,OC=2,进而得出AB=2,BC=3,利用勾股定理即可得出AC;
    (1)A.①利用折叠的性质得出BD=2﹣AD,最后用勾股定理即可得出结论;
    ②分三种情况利用方程的思想即可得出结论;
    B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;
    ②先判断出∠APC=90°,再分情况讨论计算即可.
    【详解】
    解:(1)∵一次函数y=﹣1x+2的图象与x轴,y轴分别交于点A,点C,
    ∴A(3,0),C(0,2),
    ∴OA=3,OC=2.
    ∵AB⊥x轴,CB⊥y轴,∠AOC=90°,
    ∴四边形OABC是矩形,
    ∴AB=OC=2,BC=OA=3.
    在Rt△ABC中,根据勾股定理得,AC==3.
    故答案为2,3,3;
    (1)选A.
    ①由(1)知,BC=3,AB=2,由折叠知,CD=AD.
    在Rt△BCD中,BD=AB﹣AD=2﹣AD,
    根据勾股定理得,CD1=BC1+BD1,
    即:AD1=16+(2﹣AD)1,
    ∴AD=5;
    ②由①知,D(3,5),设P(0,y).
    ∵A(3,0),
    ∴AP1=16+y1,DP1=16+(y﹣5)1.
    ∵△APD为等腰三角形,
    ∴分三种情况讨论:
    Ⅰ、AP=AD,
    ∴16+y1=15,
    ∴y=±3,
    ∴P(0,3)或(0,﹣3);
    Ⅱ、AP=DP,
    ∴16+y1=16+(y﹣5)1,
    ∴y=,
    ∴P(0,);
    Ⅲ、AD=DP,15=16+(y﹣5)1,
    ∴y=1或2,
    ∴P(0,1)或(0,2).
    综上所述:P(0,3)或(0,﹣3)或P(0,)或P(0,1)或(0,2).
    选B.①由A①知,AD=5,由折叠知,AE=AC=1,DE⊥AC于E.
    在Rt△ADE中,DE==;
    ②∵以点A,P,C为顶点的三角形与△ABC全等,
    ∴△APC≌△ABC,或△CPA≌△ABC,
    ∴∠APC=∠ABC=90°.
    ∵四边形OABC是矩形,
    ∴△ACO≌△CAB,
    此时,符合条件,点P和点O重合,即:P(0,0);
    如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,
    ∴,
    ∴,
    ∴AN=,
    过点N作NH⊥OA,
    ∴NH∥OA,
    ∴△ANH∽△ACO,
    ∴,
    ∴,
    ∴NH=,AH=,
    ∴OH=,
    ∴N(),
    而点P1与点O关于AC对称,
    ∴P1(),
    同理:点B关于AC的对称点P1,
    同上的方法得,P1(﹣).
    综上所述:满足条件的点P的坐标为:(0,0),(),(﹣).

    【点睛】
    本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(1)的关键是利用分类讨论的思想解决问题.
    19、(1)1;(2)证明见解析;(1)点坐标为.
    【解析】
    由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;
    设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;
    由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.
    【详解】
    解:点在反比例函数的图象,

    故答案为:1.
    证明:反比例函数解析式为,
    设A点坐标为
    轴于点C,轴于点D,
    点坐标为,P点坐标为,C点坐标为,
    ,,,,
    ,,

    又,
    ∽,



    解:四边形ABCD的面积和的面积相等,


    整理得:,
    解得:,舍去,
    点坐标为.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.
    20、(1)见解析;(2)x1=1,x2=2
    【解析】
    (1)根据根的判别式列出关于m的不等式,求解可得;
    (2)取m=-2,代入原方程,然后解方程即可.
    【详解】
    解:(1)根据题意,△=(m-1)2-4[-(2m+2)]=m2+6m+12=(m+2)2+4,
    ∵(m+2)2+4>1,
    ∴方程总有两个不相等的实数根;
    (2)当m=-2时,由原方程得:x2-4x+2=1.
    整理,得(x-1)(x-2)=1,
    解得x1=1,x2=2.
    【点睛】
    本题主要考查根的判别式与韦达定理,一元二次方程ax2+bx+c=1(a≠1)的根与△=b2-4ac有如下关系:①当△>1时,方程有两个不相等的两个实数根;②当△=1时,方程有两个相等的两个实数根;③当△<1时,方程无实数根.
    21、-1
    【解析】
    先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
    【详解】
    原式=1﹣4﹣+1﹣=﹣1.
    【点睛】
    本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
    22、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
    【解析】
    (1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
    (2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
    (3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
    【详解】
    (1)如图①,延长CD至G,使得DG=BE,
    ∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
    ∴△ABE≌△ADG,
    ∴AE=AG,∠BAE=∠DAG,
    ∵∠EAF=45°,∠BAD=90°,
    ∴∠BAE+∠DAF=45°,
    ∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
    又∵AF=AF,
    ∴△AEF≌△AEG,
    ∴EF=GF=DG+DF=BE+DF,
    故答案为:BE+DF=EF;
    (2)存在.
    在等边三角形ABC中,AB=BC,∠ABC=60°,
    如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
    由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
    ∴△DBE是等边三角形,
    ∴DE=BD,
    ∴在△DCE中,DE<DC+CE=4+2=6,
    ∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
    ∴BD的最大值为6;
    (3)存在.
    如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
    ∵AB=BD,∠ABC=∠DBE,BC=BE,
    ∴△ABC≌△DBE,
    ∴DE=AC,
    ∵在等边三角形BCE中,EF⊥BC,
    ∴BF=BC=2,
    ∴EF=BF=×2=2,
    以BC为直径作⊙F,则点D在⊙F上,连接DF,
    ∴DF=BC=×4=2,
    ∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.

    【点睛】
    本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
    23、(3)a=,方程的另一根为;(2)答案见解析.
    【解析】
    (3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;
    (2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.
    【详解】
    (3)将x=2代入方程,得,解得:a=.
    将a=代入原方程得,解得:x3=,x2=2.
    ∴a=,方程的另一根为;
    (2)①当a=3时,方程为2x=3,解得:x=3.
    ②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.
    当a=2时, 原方程为:x2+2x+3=3,解得:x3=x2=-3;
    当a=3时, 原方程为:-x2+2x-3=3,解得:x3=x2=3.
    综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.
    考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.
    24、(1)20,1;(2)2人;(1)男生比女生的波动幅度大.
    【解析】
    (1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.
    (2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.
    (1)比较该班级男、女生收看“两会”新闻次数的波动大小,需要求出女生的方差.
    【详解】
    (1)该班级女生人数是2+5+6+5+2=20,女生收看“两会”新闻次数的中位数是1.
    故答案为20,1.
    (2)由题意:该班女生对“两会”新闻的“关注指数”为=65%,所以,男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得:x=2.
    答:该班级男生有2人.
    (1)该班级女生收看“两会”新闻次数的平均数为=1,女生收看“两会”新闻次数的方差为:=.
    ∵2>,∴男生比女生的波动幅度大.
    【点睛】
    本题考查了平均数,中位数,方差的意义.解题的关键是明确平均数表示一组数据的平均程度,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.

    相关试卷

    安徽省淮南市谢家集区重点达标名校2021-2022学年中考数学押题卷含解析:

    这是一份安徽省淮南市谢家集区重点达标名校2021-2022学年中考数学押题卷含解析,共25页。

    2022年四川省达州地区重点达标名校中考押题数学预测卷含解析:

    这是一份2022年四川省达州地区重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了将抛物线y=﹣等内容,欢迎下载使用。

    2022年安徽省灵璧县重点名校中考数学押题卷含解析:

    这是一份2022年安徽省灵璧县重点名校中考数学押题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,若x>y,则下列式子错误的是,若2<<3,则a的值可以是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map