


所属成套资源:中考复习之线段最值问题合集
- 中考数学复习之线段和差最值隐圆问题 试卷 6 次下载
- 中考复习之线段和差最值之费马点问题 试卷 6 次下载
- 中考数学复习阿氏圆练习题,含参考答案 试卷 4 次下载
- 中考数学复习之线段和差最值问题胡不归问题 试卷 4 次下载
- 中考数学复习之线段最值之瓜豆原理 教案 教案 4 次下载
中考数学复习之线段和差最值问题之对称
展开这是一份中考数学复习之线段和差最值问题之对称,共9页。试卷主要包含了将军饮马问题,二次对称问题,过河修桥问题等内容,欢迎下载使用。
中考复习专题之线段(和差)最值问题之对称
对称问题,指的是通过对称的方式求得线段(和差)最值的问题类型,包含一次对称即将军饮马问题、二次对称、过河修桥问题等.
1.将军饮马问题
“白日登山望烽火,黄昏饮马傍交河”,这是唐代诗人李颀《古从军行》里的一句诗。而由此却引申出一系列非常有趣的数学问题,通常称为“将军饮马”。
如图,将军在图中点A处,现在他要带马去河边喝水,之后返回军营,问:将军怎么走能使得路程最短?
如图,在直线上找一点P使得PA+PB最小?
这个问题的难点在于PA+PB是一段折线段,通过观察图形很难得出结果,关于最小值,我们知道“两点之间,线段最短”、“点到直线的连线中,垂线段最短”等,所以此处,需转化问题,将折线段变为直线段.
作点A关于直线的对称点A',连接PA',则PA'=PA,所以PA+PB=PA'+PB
当A'、P、B三点共线的时候,PA'+PB=A'B,此时为最小值(两点之间线段最短)
作端点(点A或点B)关于折点(上图P点)所在直线的对称,化折线段为直线段.
2.二次对称问题
在OA、OB上分别取点M、N,使得△PMN周长最小.
此处M、N均为折点,分别作点P关于OA(折点M所在直线)、OB(折点N所在直线)的对称点,化折线段PM+MN+NP为P'M+MN+NP’’,当P'、M、N、P''共线时,△PMN周长最小.
3.过河修桥问题
已知人在图中点A村庄,现要过河去往B村,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?
考虑MN长度恒定,只要求AM+NB最小值即可.问题在于AM、NB彼此分离,所以首先通过平移,使AM与NB连在一起,将AM向下平移使得M、N重合,此时A点落在A’位置.
问题化为求A'N+NB最小值,显然,当A'、N、B共线时,AM+MN+BN的值最小,并得出桥应建的位置.
【问题扩展1】
已知将军在图中点A处,现要过两条河去往B点的军营,桥必须垂直于河岸建造,问:桥建在何处能使路程最短?
考虑PQ、MN均为定值,所以路程最短等价于AP+QM+NB最小,对于这彼此分离的三段,可以通过平移使其连接到一起.
AP平移至A'Q,NB平移至MB’,化AP+QM+NB为A'Q+QM+MB'.
当A'、Q、M、B’共线时,A'Q+QM+MB'取到最小值,再依次确定P、N位置.
【问题扩展1】
如图,将军在A点处,现在将军要带马去河边喝水,并沿着河岸走一段路,再返回军营,问怎么走路程最短?
已知A、B两点,MN长度为定值,求确定M、N位置使得AM+MN+NB值最小?
【分析】考虑MN为定值,故只要AM+BN值最小即可.将AM平移使M、N重合,AM=A'N,将AM+BN转化为A'N+NB.
构造点A关于MN的对称点A'',连接A''B,可依次确定N、M位置,可得路线.
练习题
1.如图,点P是∠AOB内任意一点,∠AOB=30°,OP=8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为___________.
- 如图,正方形ABCD的边长是4,M在DC上,且DM=1, N是AC边上的一动点,则△DMN周长的最小值是___________.
3.如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且AC:CB=1:3,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC周长最小的点P的坐标为
A. B., C., D.
4.如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,则PC+PD的最小值为
A.4 B.5 C.6 D.7
5.如图,在等边△ABC中,AB=6, N为AB上一点且BN=2AN, BC的高线AD交BC于点D,M是AD上的动点,连结BM,MN,则BM+MN的最小值是___________.
- 如图,在Rt△ABD中,AB=6,∠BAD=30°,∠D=90°,N为AB上一点且BN=2AN, M是AD上的动点,连结BM,MN,则BM+MN的最小值是___________.
7.如图,在Rt△ABC中,∠ACB=90°,AC=6.AB=12,AD平分∠CAB,点F是AC的中点,点E是AD上的动点,则CE+EF的最小值为
A.3 B.4 C. D.
8.如图,在锐角三角形ABC中,BC=4,∠ABC=60°, BD平分∠ABC,交AC于点D,M、N分别是BD,BC上的动点,则CM+MN的最小值是
A. B.2 C. D.4
9.如图,在菱形ABCD中,AC=,BD=6,E是BC的中点,P、M分别是AC、AB上的动点,连接PE、PM,则PE+PM的最小值是
A.6 B. C. D.4.5
10.如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是
A. B. C. D.
11.如图,在矩形ABCD中,AB=6,AD=3,动点P满足,则点P到A、B两点距离之和PA+PB的最小值为
A. B. C. D.
12.如图,矩形ABCD中,AB=10,BC=5,点E、F、G、H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为
A. B. C. D.
13.如图,∠AOB=60°,点P是∠AOB内的定点且OP=,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是
A. B. C.6 D.3
- 如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为 .
- 如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P为y轴上的一个动点,M、N为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN的最小值为____________.
16.如图,在平面直角坐标系中,矩形ABCD的顶点B在原点,点A、C在坐标轴上,点D的坐标为(6,4),E为CD的中点,点P、Q为BC边上两个动点,且PQ=2,要使四边形APQE的周长最小,则点P的坐示应为______________.
17.如图,矩形ABCD中,AD=2,AB=4,AC为对角线,E、F分别为边AB、CD上的动点,且EF⊥AC于点M,连接AF、CE,求AF+CE的最小值.
- 如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴的正半轴上,顶点B的坐标为(3, ),点C的坐标为(,0),点P为斜边OB上一动点,则PA+PC的最小值为___________.
19.如图,∠ AOB=30 °,点 M、 N 分别在边 OA、OB上,且 OM=1 ,ON=3,点 P、Q分别在边 OB、OA上,则 MP+PQ+QN的最小值 _________
20.如图,在矩形ABCD中,AB=4,BC=8,E为CD边的中点.若P,Q为BC边上的两动点,且PQ=2,则当BP=___时,四边形APQE的周长最小.
21.如图在河的两侧有两个村庄,A离河为60米,B离河是30米,AB的水平距离为120米,河的宽度为30米,问桥修在何处会使得从A经过桥到B的路程最小,最小值为多少?
参考答案
1.8 2.6 3.C 4.B 5. 6. 7.C 8.C 9.C 10.B
11.A 12.B 13.D 14. 15. 16. 17.5 18.
19. 20. 21.180
相关试卷
这是一份中考数学二轮复习培优专题41 几何中的最值问题之和长度有关的最值之单一线段的最值 (含解析),共33页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份中考数学二轮复习培优专题41几何中的最值问题之和长度有关的最值之单一线段的最值 (含答案),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份中考培优竞赛专题经典讲义 第8讲 最值问题之垂线段最短,共5页。